
Class - X , L - 9 Loops in Java

Notes and Exercise programs of L-9
In computer programming, loops are used to repeat a
specific block of code until a certain condition is met
(test expression is false). For example,

Imagine we need to print a sentence 50 times on your
screen. Well, we can do it by using the print statement
50 times (without using loops). How about you need
to print a sentence one million times? You need to
use loops. With loops, we can simply write the print
statement one time and run it for any number of times.

It's just a simple example showing the importance of
loop in computer programming.

There are 3 types of loops in Java:
1. for loop(fixed or entry control loop,
2. while loop(user control or entry control), and
3. do-while loop(user control or exit control loop).

(1) for () Loop

The syntax of for Loop in Java is:

for (initialization; testExpression; update)
 {
 // codes inside for loop's body
 }

Working of for loop/Dry run

1 - The initialization expression is executed only once.

2 - Then, the test expression / condition is evaluated.
Here, test expression is a boolean expression.

3 - If the test expression is evaluated to true,
Codes inside the body of for loop is executed.
4- Then the update expression is executed.
Again, the test expression is evaluated.
If the test expression is true, codes inside the body
of for loop is executed and update expression is
executed.
This process goes on until the test expression is
evaluated to false.

If the test expression is evaluated to false, for loop
terminates.

for Loop Flowchart

Working of for loop

Example 1: for Loop

// Program to print a sentence 10 times class Loop
{
public static void main(String[] args)
{
 for (int i = 1; i <= 10; ++i)
 {
 System.out.print("Line " + i+" ");
 }
 }

 }
}

Output:

Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Line 7 Line 8
Line 9 Line 10

In the above example, we have

initialization expression: int i = 1.e

test expression: i <=10

update expression: ++i

Here, initially, the value of i is 1. So the test expression
evaluates to true for the first time. Hence, the print
statement is executed. Now the update expression is
evaluated.

Each time the update expression is evaluated, the
value of i is increased by 1. Again, the test expression
is evaluated. And, the same process is repeated.

So, i is the control variable here which is used to
control the execution of loop.
This process goes on until i is 11. When i is 11, the
test expression (i <= 10) is false and the for loop
terminates.

To learn more about test expression and how it is
evaluated, visit relational and logical operators.

Example 2: for Loop

// Program to find the sum of natural
//numbers from 1 to 1000.
class Number
{
 public static void main(String[] args)
 {
 int sum = 0;
 for (int i = 1; i <= 1000; ++i)
 {
 sum += i; // sum = sum + i
 }
 System.out.println("Sum = " + sum);
 }
 }

Output:

Sum = 500500

Here, we have a variable named sum. Its initial value
is 0. Inside for loop, we have initialized a variable
named iwith value 1.

In each iteration of for loop,

the sum variable is assigned value: sum + i

the value of i is increased by 1

The loop continues until the value of i is greater then
1000. For better visualization,
Dry run
1st iteration: i = 1 and sum = 0+1 = 1 2nd iteration: i =
2 and sum = 1+2 = 3 3rd iteration: i = 3 and sum = 3+3
= 6 4th iteration: i = 4 and sum = 6+4 = 10 999th
iteration: i = 999 and sum = 498501 + 999 = 499500
1000th iteration: i = 1000 and sum = 499500 + 1000 =
500500

infinite for Loop

We should be always careful while working with loops.
It is because if we mistakenly set test expression in
such a way that it is never false, the for loop will run
forever.

This is called infinite for loop. For example,

// Infinite for Loop
 class Infinite
{
public static void main(String[] args)
{
 int sum = 0;
 for (int i = 1; i <= 10; - -i)

 for (int i = 1; i <= 10; - -i)
 {
 System.out.println("Hello");

 }
}
}

Here, the test expression (i <= 10) is
never false and hello is printed infinite number to times
(at least in theory).

Note: The initialization, update and test expression
used in for statement is optional. Here's another
example of the infinite for loop.

for (; ;)
{ }
(2) while () Loop

The syntax of while loop in Java is:

while (testExpression)
{
 //codes inside the body of while loop
 }

How while loop works?

In the above syntax, the testexpression inside
parenthesis is a boolean expression. If the test

parenthesis is a boolean expression. If the test
expression is evaluated to true,

statements inside the while loop are executed.

then, the test expression is evaluated again.

This process goes on until the test expression is
evaluated to false. If the test expression is evaluated
to false,

the while loop is terminated.

Flowchart of while Loop

Working of while Loop

Example 1: while Loop

// Program to print line 10 times
class Loop
{
public static void main()
 {
 int i = 1;
while (i <= 10)
{
System.out.print("Line " + i+" ");
++i;
}
 }
}

Output:

Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Line 7 Line 8
Line 9 Line 10

In the above example, we have a test expression (i
<= 10). It checks whether the value of i is less than or
equal to 10.

Here initially, the value of i is 1. So the test expression
evaluates to true for the first time. Hence, the print
statement inside while loop is executed.

Inside while loop notice the statement

Inside while loop notice the statement

++i;

This statement increases the value of i by 1 in each
iteration. After 10 iterations, the value of i will be
11. Then, the test expression (i <= 10) evaluates
to false and whileloop terminates.

Example 2: Java while Loop

// Program to find the sum of natural
 //numbers from 1 to 100.
class AssignmentOperator
{
public static void main()
 {
int sum = 0, i = 100;
 while (i != 0)
 {
 sum += i;
 - -i;
}
 System.out.println("Sum = " + sum);
 }
}

Output:

Sum = 5050

Here, we have two variables named sum and i whose
initial values are 0 and 100 respectively.

In each iteration of the while loop,

the sum variable is assigned value: sum + i

the value of i is decreased by 1

The loop continues until the value of i is equal to 0. For
better visualization,

1st iteration: i = 100, sum = 0+100 = 100, and --i = 99
2nd iteration: i = 99, sum = 100+99 = 199, and --i =
98 3rd iteration: i = 98, sum = 199+98 = 297, and --i =
97 99th iteration: i = 2, sum = 5047+2 =
5049, and --i = 1 100th iteration: i = 1, sum = 5049+1 =
5050, and --i = 0

(3) do...while () Loop

The do...while loop is similar to while loop with one key
difference. The body of do...while loop is executed for
once before the test expression is checked.

Here is the syntax of the do...whileloop.

do
 {
// codes inside body of do while loop

// codes inside body of do while loop
 } while (testExpression);

How do...while loop works?

The body of do...while loop is executed once (before
checking the test expression). Only then, the test
expression is checked.

If the test expression is evaluated to true, codes
inside the body of the loop are executed, and the test
expression is evaluated again. This process goes on
until the test expression is evaluated to false.

When the test expression is false, the do..while loop
terminates.

Flowchart of do...while Loop

Working of do...while Loop

Example 3: do...while Loop

The program below calculates the sum of numbers
entered by the user until user enters 0.

To take input from the user, we have used
the Scanner object. To learn more about Scanner,
visit Java Scanner.

import java.util.Scanner;
class Sum
{
public static void main(String[] args)
{

 double number, sum = 0.0;
// creates an object of Scanner class Scanner input =
new Scanner(System.in); do
 {
// takes input from the user System.out.print("Enter a
number: "); number = input.nextDouble();
sum += number;
} while (number != 0.0); // test expression
System.out.println("Sum = " + sum);
}
}

Output:

Enter a number: 2.5 Enter a number: 23.3 Enter a

Enter a number: 2.5 Enter a number: 23.3 Enter a
number: -4.2 Enter a number: 3.4 Enter a number: 0
Sum = 25.0

Infinite while Loop

We should be always careful while working with
loops. It is because if we mistakenly set the test
expression in such a way that it is never false,
the while and do...while loop will run forever.

This is called infinite while and do...while loop. For
example,

// Infinite while loop
while (true==true)
{
// body of while loop
}

Let's take another example,

// Infinite while loop
 int i = 100;
 while (i == 100)
{
System.out.print("Hey!");
}
Jump statements

While working with loops, it is sometimes desirable

While working with loops, it is sometimes desirable
to skip some statements inside the loop or terminate
the loop immediately without checking the test
expression.

In such cases, break and continue statements are
used.

The break statement in Java terminates the loop
immediately, and the control of the program moves to
the next statement following the loop.

It is almost always used with decision-making
statements (Java if() Statement).

Here is the syntax of the break statement in Java:

break;

How break statement works?

Working of Java break Statement

Example 1: Java break statement

class Test
{
 public static void main(String[] args)
 {
// for loop
 for (int i = 1; i <= 10; ++i)
 {
// if the value of i is 5 the loop terminates
if (i == 5)
 { break; }
System.out.println(i);
 } } }

Output:

1 2 3 4

In the above program, we are using the for loop to print
the value of i in each iteration. To know how for loop
works, visit the Java for loop. Here, notice the
statement,

if (i == 5)
{
break;
}

This means when the value of i is equal to 5, the loop
terminates. Hence we get the output with values less
than 5 only.

Example 2: Java break statement

The program below calculates the sum of numbers
entered by the user until user enters a negative
number.

To take input from the user, we have used
the Scanner object. To learn more about Scanner,
visit Java Scanner.

import java.util.Scanner;
class UserInputSum

class UserInputSum
{
public static void main(String[] args)
 {

double number, sum = 0.0;
 // create an object of Scanner
 Scanner input = new Scanner(System.in); while (true)
 {
 System.out.print("Enter a number: ");
// takes double input from user
number = input.nextDouble();
 // if number is negative the loop terminates
if (number < 0.0)
{ break; }
sum += number;
}
System.out.println("Sum = " + sum);
} }

Output:

Enter a number: 3.2 Enter a number: 5 Enter a number:
2.3 Enter a number: 0 Enter a number: -4.5 Sum = 10.5

In the above program, the test expression of
the while loop is always true. Here, notice the line,

if (number < 0.0)
{
break;

break;
}

This means when the user input negative numbers, the
while loop is terminated.

Java break and Nested Loop

In the case of nested loops, the break statement
terminates the innermost loop.

Working of break Statement with Nested Loops

Here, the break statement terminates the
innermost whileloop, and control jumps to the outer
loop.

Lesson 10
Labeled break Statement

Till now, we have used the unlabeled break statement.

Till now, we have used the unlabeled break statement.
It terminates the innermost loop and switch
statement. However, there is another form of break
statement in Java known as the labeled break.

We can use the labeled break statement to terminate
the outermost loop as well.

Working of the labeled break statement in Java

As you can see in the above image, we have used
the label identifier to specify the outer loop. Now,
notice how the break statement is used (break label;).

Here, the break statement is terminating the labeled
statement (i.e. outer loop). Then, the control of the
program jumps to the statement after the labeled
statement.

Here's another example:

while (testExpression)
{ // codes second:
 while (testExpression)
 { // codes
 while(testExpression)
 { // codes break second;
 }
 } // control jumps here
 }

In the above example, when the statement break
second; is executed, the while loop labeled
as second is terminated. And, the control of
the program moves to the statement after the
second whileloop.

Example 3: labeled break Statement

class LabeledBreak
{
public static void main(String[] args)
 {
// the for loop is labeled as first
 first:
for(int i = 1; i < 5; i++)
 {
 // the for loop is labeled as second second:
 for(int j = 1; j < 3; j ++)

 for(int j = 1; j < 3; j ++)
 {
 System.out.println("i = " + i + "; j = " +j);
// the break statement breaks the first for loop
if (i == 2)
 break first;
}
}
}
}

Output:

i = 1; j = 1 i = 1; j = 2 i = 2; j = 1

In the above example, the labeled break statement is
used to terminate the loop labeled as first. That is,

first: for(int i = 1; i < 5; i++) {...}

Here, if we change the statement break first; to break
second; the program will behave differently. In this
case, for loop labeled as second will be terminated. For
example,

class LabeledBreak
{
 public static void main(String[] args)
{
// the for loop is labeled as first
 first:

 first:
for(int i = 1; i < 5; i++)
 {
// the for loop is labeled as second second:
for(int j = 1; j < 3; j ++)
{
 System.out.println("i = " + i + "; j = " +j);
// the break statement terminates the loop labeled as
second
if (i == 2)
break second;
}
 }
 }
 }

Output:

i = 1; j = 1 i = 1; j = 2 i = 2; j = 1 i = 3; j = 1 i = 3; j = 2 i = 4; j
= 1 i = 4; j = 2

Note: The break statement is also used to terminate
cases inside the switch statement.

Java continue Statement

The continue statement in Java skips the current
iteration of a loop (for, while, do...while, etc) and the
control of the program moves to the end of the loop.
And, the test expression of a loop is evaluated.

And, the test expression of a loop is evaluated.

In the case of for loop, the update statement is
executed before the test expression.

The continue statement is almost always used in
decision-making statements (if...else Statement). It's
syntax is:

continue;

How continue statement works?

Working of Java continue statement

Example 1: Java continue statement

Example 1: Java continue statement

class Test
{
 public static void main(String[] args)
 {
 // for loop
 for (int i = 1; i <= 10; ++i)
 {
// if value of i is between 4 and 9, continue is executed
 if (i > 4 && i < 9)
 {
continue;
}
 System.out.println(i);
}
 }
}

Output:

1 2 3 4 9 10

In the above program, we are using for loop to print the
value of i in each iteration. To know how forloop works,
visit Java for loop. Here, notice the statement,

if (i > 5 && i < 9)
{ continue; }

This means when the value of ibecomes more than 4

This means when the value of ibecomes more than 4
and less then 9, the print statement inside the loop is
skipped. Hence we get the output with values 5, 6, 7,
and 8 skipped.

Example 2: Java continue statement

The program below calculates the sum of 5 positive
numbers entered by the user. If the user enters
negative number or zero, it is skipped from the
calculation.

To take input from the user, we have used
the Scanner object.

import java.util.Scanner;
class AssignmentOperator
{
 public static void main(String[] args)
 {
double number, sum = 0.0;
// create an object of Scanner
Scanner input = new Scanner(System.in); for (int i = 1; i
< 6; ++i)
{
 System.out.print("Enter a number: ");
// takes double type input from the user number =
input.nextDouble();
// if number is negative, the iteration is skipped
if (number <= 0.0)
{ continue; }

{ continue; }
sum += number;
 }
System.out.println("Sum = " + sum);
}
}

Output:

Enter a number: 2.2 Enter a number: 5.6 Enter a
number: 0 Enter a number: -2.4 Enter a number: -3 Sum
= 7.8

In the above program, notice the line,

if (number < 0.0)
{ continue; }

This means when the user input negative numbers, the
current iteration of the loop is skipped. And the next
iteration is started.

Java continue and Nested Loop

In the case of nested loops, the continue skips the
current iteration of the innermost loop.

Working of the continue statement with Nested Loops

Lesson 10
Labeled continue Statement

Till now, we have used the
unlabeled continue statement. It is used to terminate
the innermost loop . However, there is another form
of continue statement in Java known as labeled
contine.

We can use the labeled continue statement to
terminate the outermost loop as well.

Working of the labeled continue Statement in Java

As you can see in the above image, we have used
the label identifier to specify the outer loop. Now,
notice how the continue statement is used (continue
label;).

Here, the continue statement is skipping the current
iteration of the labeled statement (i.e. outer loop).
Then, the control of the program goes to the next
iteration of the labeled statement (outer loop)

Example 3: labeled continue Statement

class LabeledContinue
{
public static void main(String[] args)
 {
// the outer for loop is labeled as label first:
 for (int i = 1; i < 6; ++i)
{

{
 for (int j = 1; j < 5; ++j)
{
 if (i == 3 || j == 2) // skips the iteration of label (outer for
loop)
continue first;
System.out.println("i = " + i + "; j = " + j);
}
}
}
 }

Output:

i = 1; j = 1 i = 2; j = 1 i = 4; j = 1 i = 5; j = 1

In the above example, the labeled continue statement
is used to skip the current iteration of the loop labeled
as first.

if (i==3 || j==2)
 continue first;

Here, we can see the outermost for loop is labeled
as first,

first:
for (int i = 1; i < 6; ++i)
 {..}

Hence, the iteration of the outer for loop is skipped if

Hence, the iteration of the outer for loop is skipped if
the value of i is 3 or the value of j is 2.

Note: The use of labeled continue is often discouraged
as it makes your code hard to understand.

Exercise programs
Write the programs With comments and Variable
Description.

Where ever
 InputStresmReader and BufferedReader classes are
use use Scanner class and it's methods for input.
Q15
class Q15
{
public static void main()
{
for(int i=150; i<=250;i++)
{

//If the number is divisible by 5 and 6
//don't display it
 if(i%5==0 && i%6==0)
 ;
 else if(i%5==0)
 System.out.println(i);
 else if(i%6==0)
 System.out.println(i);

 System.out.println(i);
}
}
}

Q16
// Reversing a number by using while loop
import java.util.Scanner;
class Q16
{
 public static void main()
 {
 Scanner sc= new Scanner(System.in);
 int n=0;
 System.out.println(" Enter a number ");
 n=sc.nextInt();
 int rev=0,t=n;
 while(n>0)
 {
 int r=n%10;
 rev=(rev×10)+r;
 n=n/10;
 }
System.out.println("Original no is : "+ t);
System.out.println("Reverse no is :"+ rev);
}
}

Q17
// Removing 0 from the entered number.
import java.util.Scanner;

import java.util.Scanner;
class Q17
{
 public static void main()
 {
 Scanner sc= new Scanner(System.in);
 String n="", st="";
 System.out.println(" Enter a number ");
 n=sc next();

 for(int i=0; i<n.length();i++)
 {
 char ch=n.charAt(i);
 if(ch!='0')
 st=st+ch;
 }

System.out.println("New number is : "+ st);
}
}
Q18
//Tribonic series
import java.util.Scanner;
class Q18
{
 public static void main()
 {
 Scanner sc= new Scanner(System.in);
 int n=0, a=0,b=1,c=2, s=0;
 System.out.println(" Enter a number ");
 n=sc next();

 n=sc next();
 System.out.print(a+" "+b +" "+c);
 for(int i=4; i<=n;i++)
 {
 s=a+b+c;
 System.out.print(" "+s);
 a=b;
 b=c;
 c=s;
 }
}
}
Q20
//Menu driven program
import java.util.Scanner;
class Q20
{
 public static void main()
 {
 Scanner sc= new Scanner(System.in);
 int ch=0;
 System.out.println(" (1) for Pattern1\n (2)for
Pattern2");

 System.out.println(" Enter your choice :");
 n=sc nextInt();
 switch(ch)
 {
 case 1:
 String s=" ICSE";
 for(int i=0; i<s.length();i++)

 for(int i=0; i<s.length();i++)
 {
 char ch=s.charAt(i);
 for(int sp=0; sp<=i;sp++)
 System.out.print(" ");
 System.out.println(ch);
 }
 break;
 case 2:
 String s=" ICSE";
 for(int i=0; i<s.length();i++)
 {
 char ch=s.charAt(i);
 for(int sp=s.length()-1; sp>=i;sp--)
 System.out.print(" ");
 System.out.println(ch);
 }
 break;
 default:
System.out.println(" Wrong choice");
}
}
}
Q22
//Pronic number
import java.util.Scanner;
class PronicNumber
{
 public static void main()
 {
 Scanner sc= new Scanner(System.in);

 Scanner sc= new Scanner(System.in);
 int n=0;
 System.out.println(" Enter a no.");
 n=sc nextInt();
 for(int i=1; i<=n/2;i++)
 {
 if(i × (i+1)==n)
 {
 System.out.println((i × (i+1)+"= "+ i +" × "+(i+1));
 break;
 }
 }
if(i>n/2)
System.out.println(n+" is not a Pronic no ");
}
}

Q(24)
Use Scanner class for accepting the number.
Answer:
class test
{
public static void main (int n)
{
int S = 0, R;
int c = n;
while (n! = 0)
{
 R = n % 10;
 S = S + R;
 n = n/ 10;

 n = n/ 10;
}
if (c % S == 0)
System.out.println (“it is Niven number");
else
System.out.println (“It is Not a Niven No.");
}
}

Q(26)

Q(27)

Q30
(ii)
import java.util.Scanner;

import java.util.Scanner;
class Series
{
 public static void main()
 {
 Scanner sc= new Scanner(System.in);
 int n=0,s=0, x=3;
 System.out.println(" Enter the value of n = ");
 n=sc nextInt();
 for(int i=1; i<=n;i++)
 {
 if(i %2==0)
 s=s-(int)Math.pow(x,i);
 else
 s=s+(int)Math.pow(x,i);
 }
System.out.println("Sum of the series is : "+s);
}
}
(vi)
import java.util.Scanner;
class Series
{
 public static void main()
 {
 Scanner sc= new Scanner(System.in);
 int n=0,s=0, x=0;
 System.out.println(" Enter the value of
 n = ");
 n=sc nextInt();
 System.out.println(" Enter the value

 System.out.println(" Enter the value
 of x = ");
 x=sc nextInt();
 for(int i=1; i<=n;i=i+1)
 {
 s=s+(float)(x+i)/(i+2);
 }
System.out.println(" Sum of the series is :"+ s);
}
}

(vii)
class Series
{
public static void main ()
{
float s=0f;
int f=1;
for(int i=2; i<=20;i++)
{
 f=f× i; // calculating the factorial
 s=s+(float)x/f;
}
System.out.println(" Sum of the series is : "+ s);
}
}

Q(31)

Last modified: 9:31 am

