

EXERCISE 18.1

1. Find the values of (i) 7 sin 30⁰ cos 60⁰ (ii) 3 sin² 45⁰ + 2 cos² 60⁰ (iii) cos² 45⁰ + sin² 60⁰ + sin² 30⁰ (iv) cos 90⁰ + cos² 45⁰ sin 30⁰ tan 45⁰. Solution:

(i) 7 sin 30⁰ cos 60⁰ Substituting the values = $7 \times \frac{1}{2} \times \frac{1}{2}$ = $(7 \times 1 \times 1)/(2 \times 2)$ = 7/4

(ii) $3 \sin^2 45^0 + 2 \cos^2 60^0$ Substituting the values = $3 \times (1/\sqrt{2})^2 + 2 \times (1/2)^2$ By further calculation = $3 \times \frac{1}{2} + 2 \times \frac{1}{4}$ = $3/2 + \frac{1}{2}$ So we get = (3 + 1)/2= 4/2= 2

(iii) $\cos^2 45^0 + \sin^2 60^0 + \sin^2 30^0$ Substituting the values = $(1/\sqrt{2})^2 + (\sqrt{3}/2)^2 + (1/2)^2$ By further calculation = $\frac{1}{2} + \frac{3}{4} + \frac{1}{4}$ Taking LCM = (2 + 3 + 1)/4= $\frac{6}{4}$ = $\frac{3}{2}$

(iv) $\cos 90^{0} + \cos^{2} 45^{0} \sin 30^{0} \tan 45^{0}$ Substituting the values = $0 + (1/\sqrt{2})^{2} \times \frac{1}{2} \times 1$ By further calculation = $\frac{1}{2} \times \frac{1}{2} \times 1$ = $\frac{1}{4}$

2. Find the values of

$$(i) \frac{\sin^2 45^0 + \cos^2 45^0}{\tan^2 60^0}$$

$$(ii) \frac{\sin 30^0 - \sin 90^0 + 2\cos 0^0}{\tan 30^0 \times \tan 60^0}$$

$$(iii) \frac{4}{3} \tan^2 30^0 + \sin^2 60^0 - 3\cos^2 60^0 + \frac{3}{4} \tan^2 60^0 - 2\tan^2 45^0.$$

Solution:

$$(i)\frac{\sin^2 45^0 + \cos^2 45^0}{\tan^2 60^0}$$

 $Substituting \ the \ values$

$$=\frac{(\frac{1}{\sqrt{2}})^2 + (\frac{1}{\sqrt{2}})^2}{\sqrt{3}^2}$$

 $By\ further\ calculation$

$$=\frac{\frac{1}{2}+\frac{1}{2}}{3}$$
$$=\frac{1}{3}$$

 $(ii)\frac{sin30^{0} - sin90^{0} + 2cos0^{0}}{tan30^{0} \times tan60^{0}}$

 $Substituting \ the \ values$

$$= \frac{\frac{1}{2} - 1 + 2 \times 1}{\frac{1}{\sqrt{3}} \times \sqrt{3}}$$
$$= \frac{\frac{1}{2} - 1 + 2}{1}$$

So we get

$$= \frac{1}{2} - 1 + 2$$
$$= \frac{1}{2} + 1$$
$$= \frac{1+2}{2}$$
$$= \frac{3}{2}$$

(iii) $4/3 \tan^2 30^0 + \sin^2 60^0 - 3 \cos^2 60^0 + \frac{3}{4} \tan^2 60^0 - 2 \tan^2 45^0$ Substituting the values $= 4/3 (1/\sqrt{3})^2 + (\sqrt{3}/2)^2 - 3 (1/2)^2 + \frac{3}{4} \times (\sqrt{3})^2 - 2 \times 1^2$ By further calculation $= 4/3 \times 1/3 + \frac{3}{4} - 3 \times \frac{1}{4} + \frac{3}{4} \times 3 - 2 \times 1$ $= 4/9 + \frac{3}{4} - \frac{3}{4} + \frac{9}{4} - 2$ So we get = 4/9 + 9/4 - 2Taking LCM =(16+81-72)/36=(97-72)/36= 25/36

3. Find the values of $(i)\frac{\sin 60^0}{\cos^2 45^0} - 3\tan 30^0 + 5\cos 90^0$ $(ii)2\sqrt{2}cos45^{0}cos60^{0} + 2\sqrt{3}sin30^{0}tan60^{0} - cos0^{0}$ $(iii)\frac{4}{5}tan^260^0 - \frac{2}{sin^230^0} - \frac{3}{4}tan^230^0.$ Solution: $(i)\frac{\sin 60^0}{\cos^2 45^0} - 3\tan 30^0 + 5\cos 90^0$

Substituting the values

$$= \frac{\left(\frac{\sqrt{3}}{2}\right)}{\left(\frac{1}{\sqrt{2}}\right)^2} - 3 \times \frac{1}{\sqrt{3}} + 5 \times 0$$
$$= \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} - \sqrt{3} - 0$$

So we get

$$= \frac{\sqrt{3}}{2} \times \frac{2}{1} - \sqrt{3}$$
$$= \sqrt{3} - \sqrt{3}$$

= 0

(ii) $2\sqrt{2} \cos 45^{\circ} \cos 60^{\circ} + 2\sqrt{3} \sin 30^{\circ} \tan 60^{\circ} - \cos 0^{\circ}$ Substituting the values

$$= 2\sqrt{2} \times 1/\sqrt{2} \times \frac{1}{2} + 2\sqrt{3} \times \frac{1}{2} \times \sqrt{3} - 1$$

By further calculation
$$= 2 \times 1/1 \times 1/2 + 2 \times 3 \times \frac{1}{2} - 1$$

$$= 1 + 3 - 1$$

$$= 3$$

$$(iii)\frac{4}{5}tan^260^0 + \frac{2}{sin^230^0} - \frac{3}{4}tan^230^0$$

 $Substituting \ the \ values$

$$=\frac{4}{5}\times(\sqrt{3})^2-\frac{2}{(\frac{1}{2})^2}-\frac{3}{4}(\frac{1}{\sqrt{3}})^2$$

By further calculation

$$=\frac{4}{5}\times 3 - \frac{2}{\frac{1}{4}} - \frac{3}{4}\times \frac{1}{3}$$

So we get

	12		2	Х	4		1
	5	_		1		_	4
	12		8		1		
= -	5		1	_	$\overline{4}$		

 $= \frac{48 - 160 - 5}{20}$ $= \frac{43 - 160}{20}$ $= \frac{-117}{20}$ $= -5\frac{17}{20}$

4. Prove that

(i) $\cos^2 30^0 + \sin 30^0 + \tan^2 45^0 = 2 \frac{1}{4}$ (ii) $4 (\sin^4 30^0 + \cos^4 60^0) - 3 (\cos^2 45^0 - \sin^2 90^0) = 2$ (iii) $\cos 60^0 = \cos^2 30^0 - \sin^2 30^0$. Solution:

(i)
$$\cos^2 30^0 + \sin 30^0 + \tan^2 45^0 = 2\frac{1}{4}$$

Consider LHS = $\cos^2 30^0 + \sin 30^0 + \tan^2 45^0$ Substituting the values = $(\sqrt{3}/2)^2 + \frac{1}{2} + 1^2$ By further calculation = $\frac{3}{4} + \frac{1}{2} + 1$ Taking LCM = (3 + 2 + 4)/4= 9/4= $2\frac{1}{4}$ = RHS

Therefore, LHS = RHS.

(ii) 4 $(\sin^4 30^0 + \cos^4 60^0) - 3 (\cos^2 45^0 - \sin^2 90^0) = 2$ Consider LHS = $4 (\sin^4 30^0 + \cos^4 60^0) - 3 (\cos^2 45^0 - \sin^2 90^0)$ Substituting the values $=4[(\frac{1}{2})^4 + (\frac{1}{2})^4] - 3[(1/\sqrt{2})^2 - 1^2]$ It can be written as $= 4 [\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} - 3 [\frac{1}{2} - 1]$ By further calculation = 4 [1/16 + 1/16] - 3 (-1/2)=4[(1 + 1)/16] + 3/2So we get $= (4 \times 3)/16 + 3/2$ = 8/16 + 3/2 $= \frac{1}{2} + \frac{3}{2}$ =(1+3)/2= 4/2= 2= RHSTherefore, LHS = RHS. (iii) $\cos 60^\circ = \cos^2 30^\circ - \sin^2 30^\circ$

Consider LHS = $\cos 60^{\circ} = \frac{1}{2}$ RHS = $\cos^2 30^{\circ} - \sin^2 30^{\circ}$ Substituting the values = $(\sqrt{3}/2)^2 + (1/2)^2$ By further calculation = $\frac{3}{4} - \frac{1}{4}$ = (3 - 1)/4= $\frac{2}{4}$

= RHS

Therefore, LHS = RHS.

5. (i) If $x = 30^{\circ}$, verify that $\tan 2x = 2\tan x/(1 - \tan^2 x)$. (ii) If $x = 15^{\circ}$, verify that $4 \sin 2x \cos 4x \sin 6x = 1$. Solution:

(i) It is given that $x = 30^{0}$ Consider LHS = tan 2x Substituting the value of x = tan 60^{0} = $\sqrt{3}$

 $RHS = \frac{2tanx}{1 - tan^2x}$

 $Substituting \ the \ value \ of \ x$

 $= \frac{2tan30^{0}}{1-tan^{2}30^{0}}$

By further calculation

 $=\frac{2\times\frac{1}{\sqrt{3}}}{1-(\frac{1}{\sqrt{3}})^2}$

So we get

$$= \frac{\frac{2}{\sqrt{3}}}{1 - \frac{1}{3}}$$
$$= \frac{\frac{2}{\sqrt{3}}}{\frac{3 - 1}{3}}$$
$$= \frac{2}{\sqrt{3}} \times \frac{3}{2}$$
$$= \frac{3}{\sqrt{3}}$$
$$= \sqrt{3}$$

Therefore, LHS = RHS.

(ii) It is given that $x = 15^{0}$ $2x = 15 \times 2 = 30^{0}$ $4x = 15 \times 4 = 60^{0}$ $6x = 15 \times 6 = 90^{0}$

Here

LHS = 4 sin 2x cos 4x sin 6x It can be written as = 4 sin 30⁰ cos 60⁰ sin 90⁰ So we get = 4 $\times \frac{1}{2} \times \frac{1}{2} \times 1$ = 1 = RHS

Therefore, LHS = RHS.

6. Find the values of

$$\begin{split} (i) \sqrt{\frac{1-\cos^2 30^0}{1-\sin^2 30^0}} \\ (ii) \frac{\sin 45^0 \cos 45^0 \cos 60^0}{\sin 60^0 \cos 30^0 \tan 45^0} \\ \mathbf{Solution:} \end{split}$$

$$(i)\sqrt{\frac{1-\cos^2 30^0}{1-\sin^2 30^0}}$$

Substituting the values

$$= \sqrt{\frac{1 - (\frac{\sqrt{3}}{2})^2}{1 - (\frac{1}{2})^2}}$$

By further calculation

$$=\sqrt{\frac{1-\frac{3}{4}}{1-\frac{1}{4}}}$$

Taking LCM

$$= \sqrt{\frac{\frac{4-3}{4}}{\frac{4-1}{4}}}$$

$$= \sqrt{\frac{\frac{1}{4}}{\frac{3}{4}}}$$
$$= \sqrt{\frac{1}{4} \times \frac{4}{3}}$$

$$= \sqrt{\frac{1}{3}}$$
$$= \frac{1}{\sqrt{3}}$$

 $(ii)\frac{sin45^{0}cos45^{0}cos60^{0}}{sin60^{0}cos30^{0}tan45^{0}}$

 $Substituting \ the \ values$

$$=\frac{\frac{1}{\sqrt{2}}\times\frac{1}{\sqrt{2}}\times\frac{1}{2}}{\frac{\sqrt{3}}{2}\times\frac{\sqrt{3}}{2}\times1}$$

 $By\ further\ calculation$

$$= \frac{\frac{1}{2} \times \frac{1}{2}}{\frac{3}{4} \times 1}$$
$$= \frac{\frac{1}{4}}{\frac{3}{4}}$$
$$= \frac{1}{3}$$

7. If $\theta = 30^{\circ}$, verify that (i) $\sin 2\theta = 2 \sin \theta \cos \theta$ (ii) $\cos 2\theta = 2 \cos^2 \theta - 1$ (iii) $\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$ (iv) $\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta$. Solution:

It is given that $\theta = 30^{0}$ (i) sin $2\theta = 2 \sin \theta \cos \theta$ Consider LHS = sin 2θ

Substituting the value of θ $=\sin 2 \times 30^{\circ}$ $= \sin 60^{\circ}$ $=\sqrt{3/2}$ RHS = $2 \sin \theta \cos \theta$ Substituting the value of θ $= 2 \sin 30^{\circ} \cos 30^{\circ}$ So we get $= 2 \times \frac{1}{2} \times \sqrt{3/2}$ $= 1 \times \sqrt{3/2}$ $=\sqrt{3/2}$ Therefore, LHS = RHS. (ii) $\cos 2\theta = 2 \cos^2 \theta - 1$ Consider $LHS = \cos 2\theta$ Substituting the value of θ $=\cos 2 \times 30^{\circ}$ $= \cos 60^{\circ}$ $= \frac{1}{2}$ RHS = $2\cos^2\theta - 1$ Substituting the value of θ $= 2\cos^2 30^{\circ} - 1$ So we get $= 2 (\sqrt{3/2})^2 - 1$ $= 2 \times \frac{3}{4} - 1$ = 3/2 - 1=(3-2)/2 $= \frac{1}{2}$ Therefore, LHS = RHS. (iii) $\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$ Consider LHS = $\sin 3\theta$ Substituting the value of θ $=\sin 3 \times 3\overline{0}^{0}$ $= \sin 90^{\circ}$ RHS = $3 \sin \theta - 4 \sin^3 \theta$ Substituting the value of θ

= 1

So we get

 $= 3 \times \frac{1}{2} - 4 \times (1/2)^{3}$ = 3/2 - 4 × 1/8 = 3/2 - 1/2 Taking LCM = (3 - 1)/2 = 2/2 = 1

Therefore, LHS = RHS.

(iv) $\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta$ Consider LHS = $\cos 3\theta$ Substituting the value of θ = $\cos 3 \times 30^0$ = $\cos 90^0$ = 0

```
RHS = 4 \cos^3 \theta - 3 \cos \theta
Substituting the value of \theta
= 4 \cos^3 30^0 - 3 \cos 30^0
So we get
= 4 \times (\sqrt{3}/2)^3 - 3 \times (\sqrt{3}/2)
By further calculation
= 4 \times 3\sqrt{3}/8 - 3\sqrt{3}/2
= 3\sqrt{3}/2 - 3\sqrt{3}/2
= 0
```

Therefore, LHS = RHS.

8. If $\theta = 30^{\circ}$, find the ratio 2 sin θ : sin 2 θ . Solution:

It is given that $\theta = 30^{0}$ We know that 2 sin θ : sin $2\theta = 2 \sin 30^{0}$: sin 2×30^{0} So we get = 2 sin 30^{0} : sin 60^{0} = 2 sin $30^{0}/ \sin 60^{0}$ Substituting the values

$$=\frac{2\times\frac{1}{2}}{\frac{\sqrt{3}}{2}}$$

By further simplification

Therefore, $2 \sin \theta$: $\sin 2\theta = 2$: $\sqrt{3}$.

9. By means of an example, show that $sin (A + B) \neq sin A + sin B$. Solution:

Consider A = 30° and B = 60° LHS = sin (A + B) Substituting the values of A and B = sin ($30^{\circ} + 60^{\circ}$) = sin 90° = 1

RHS = sin A + sin B Substituting the values = sin 30⁰ + sin 60⁰ So we get = $\frac{1}{2} + \frac{\sqrt{3}}{2}$ = $(1 + \frac{\sqrt{3}}{2})$

Therefore, LHS \neq RHS i.e. sin (A + B) \neq sin A + sin B.

10. If $A = 60^{\circ}$ and $B = 30^{\circ}$, verify that (i) sin (A + B) = sin A cos B + cos A sin B(ii) cos (A + B) = cos A cos B - sin A sin B(iii) sin (A - B) = sin A cos B - cos A sin B(iv) tan (A - B) = (tan A - tan B)/(1 + tan A tan B). Solution:

It is given that $A = 60^{\circ}$ and $B = 30^{\circ}$ (i) sin (A + B) = sin A cos B + cos A sin B Here


```
LHS = sin (A + B)
Substituting the values of A and B
= sin (60^{\circ} + 30^{\circ})
= sin 90^{\circ}
= 1
```

RHS = sin A cos B + cos A sin B Substituting the values of A and B = sin 60° cos 30° + cos 60° sin 30° So we get = $\sqrt{3/2} \times \sqrt{3/2} + \frac{1}{2} \times \frac{1}{2}$ By further calculation = $\frac{3}{4} + \frac{1}{4}$ = 4/4 = 1

Therefore, LHS = RHS.

(ii) $\cos (A + B) = \cos A \cos B - \sin A \sin B$ Here LHS = $\cos (A + B)$ Substituting the value of A and B = $\cos (60^{0} + 30^{0})$ = $\cos 90^{0}$ = 0

```
RHS = cos A cos B – sin A sin B
Substituting the value of A and B
= cos 60^{\circ} cos 30^{\circ} – sin 60^{\circ} sin 30^{\circ}
So we get
= \frac{1}{2} \times \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} + \frac{1}{2}
= \frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4}
= 0
```

Therefore, LHS = RHS.

(iii) $\sin (A - B) = \sin A \cos B - \cos A \sin B$ Here LHS = $\sin (A - B)$ Substituting the values of A and B = $\sin (60^{0} - 30^{0})$ = $\sin 30^{0}$ = $\frac{1}{2}$

RHS = sin A cos B - cos A sin BSubstituting the values of A and B


```
= \sin 60^{\circ} \cos 30^{\circ} - \cos 60^{\circ} \sin 30^{\circ}
So we get
= \sqrt{3/2} \times \sqrt{3/2} - \frac{1}{2} \times \frac{1}{2}
= \frac{3}{4} - \frac{1}{4}
= (3 - 1)/4
= \frac{2}{4}
= \frac{1}{2}
```

Therefore, LHS = RHS.

(iv) $\tan (A - B) = (\tan A - \tan B)/(1 + \tan A \tan B)$ Here LHS = $\tan (A - B)$ Substituting the values of A and B = $\tan (60^0 - 30^0)$ = $\tan 30^0$ = $1/\sqrt{3}$

RHS = $(\tan A - \tan B)/(1 + \tan A \tan B)$ Substituting the values of A and B = $(\tan 60^{\circ} - \tan 30^{\circ})/(1 + \tan 60^{\circ} \tan 30^{\circ})$ So we get $\sqrt{3} - \frac{1}{2}$

So we get = $\frac{\sqrt{3} - \frac{1}{\sqrt{3}}}{1 + \sqrt{3} \times \frac{1}{\sqrt{3}}}$

By further simplification

 $= \frac{3-1}{\frac{\sqrt{3}}{1+1}}$ $= \frac{2}{\frac{\sqrt{3}}{2}}$ We get $= \frac{2}{\sqrt{3} \times \frac{1}{2}}$ $= \frac{1}{\sqrt{3}}$

Therefore, LHS = RHS.

11. (i) If 2θ is an acute angle and $2 \sin 2\theta = \sqrt{3}$, find the value of θ . (ii) If $20^0 + x$ is an acute angle and $\cos (20^0 + x) = \sin 60^0$, then find the value of x. (iii) If $3 \sin^2 \theta = 2 \frac{1}{4}$ and θ is less than 90^0 , find the value of θ . Solution:

(i) It is given that2θ is an acute angle

 $2 \sin 2\theta = \sqrt{3}$ It can be written as $\sin 2\theta = \sqrt{3/2} = \sin 60^\circ$ By comparing $2\theta = 60^{\circ}$ So we get $\theta = 60^{0/2} = 30^{0}$ Therefore, $\theta = 30^{\circ}$. (ii) It is given that 20° + x is an acute angle $\cos(20^{\circ} + x) = \sin 60^{\circ}$ It can be written as $\cos(20^0 + x) = \sin 60^0 = \cos(90^0 - 60^0)$ $= \cos 30^{\circ}$ By comparing $20^{\circ} + x = 30^{\circ}$ $x = 30^0 - 20^0 = 10^0$ Therefore, $x = 10^{\circ}$. (iii) It is given that $3\sin^2\theta = 2\frac{1}{4}$ θ is less than 90⁰ We can write it as $\sin^2 \theta = 9/(4 \times 3) = \frac{3}{4}$ So we get $\sin \theta = \sqrt{3/2} = \sin 60^{\circ}$ By comparing $\theta = 60^{\circ}$

Therefore, $\theta = 60^{\circ}$.

12. If θ is an acute angle and $\sin \theta = \cos \theta$, find the value of θ and hence, find the value of $2 \tan^2 \theta + \sin^2 \theta - 1$. Solution:

It is given that $\sin \theta = \cos \theta$ We can write it as $\sin \theta / \cos \theta = 1$ $\tan \theta = 1$ We know that $\tan 45^0 = 1$ $\tan \theta = \tan 45^0$ So we get

BYJU'S

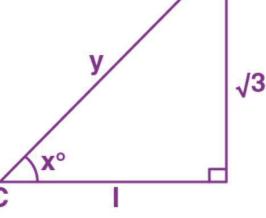
 $\theta = 45^{\circ}$

We know that $2 \tan^2 \theta + \sin^2 \theta - 1 = 2 \tan^2 45^0 + \sin^2 45^0 - 1$ Substituting the values $= 2 (1)^2 + (1/\sqrt{2})^2 - 1$ By further calculation $= 2 \times 1 \times 1 + \frac{1}{2} - 1$ $= 2 + \frac{1}{2} - 1$ = 5/2 - 1Taking LCM = (5 - 2)/2= 3/2

Therefore, $2 \tan^2 \theta + \sin^2 \theta - 1 = 3/2$.

13. From the adjoining figure, find (i) tan x⁰ (ii) x

- (iii) cos x⁰
- (iv) use $\sin x^0$ to find y.



Solution:

(i) $\tan x^0$ = perpendicular/base It can be written as = AB/BC = $\sqrt{3}/1$ = $\sqrt{3}$

(ii) $\tan x^0 = \sqrt{3}$ We know that $\tan 60^0 = \sqrt{3}$

 $\tan x^0 = \tan 60^0$ x = 60

(iii) We know that $\cos x^0 = \cos 60^0$ So we get $\cos x^0 = \frac{1}{2}$

(iv) sin x⁰ = perpendicular/hypotenuse = AB/AC Substitute x = 60 from (ii) sin $60^{0} = \sqrt{3}/y$ We know that sin $60^{0} = \sqrt{3}/2$ $\sqrt{3}/2 = \sqrt{3}/y$ By further calculation y = $(\sqrt{3} \times 2)/\sqrt{3}$ y = $(2 \times 1)/1 = 2$

Therefore, y = 2.

14. If 3 θ is an acute angle, solve the following equations for θ : (i) 2 sin 3 $\theta = \sqrt{3}$ (ii) tan 3 $\theta = 1$. Solution:

(i) $2 \sin 3\theta = \sqrt{3}$ It can be written as $\sin 3\theta = \sqrt{3}/2$ We know that $\sin 60^0 = \sqrt{3}/2$ $\sin 3\theta = \sin 60^0$ $3\theta = 60^0$ So we get $\theta = 60/3 = 20^0$

(ii) $\tan 3\theta = 1$ We know that $\tan 45^0 = 1$ $\tan 3\theta = \tan 45^0$ So we get $3\theta = 45^0$ $\theta = 15^0$

15. If $\tan 3x = \sin 45^{\circ} \cos 45^{\circ} + \sin 30^{\circ}$, find the value of x. Solution:

We know that $\tan 3x = \sin 45^{\circ} \cos 45^{\circ} + \sin 30^{\circ}$ Substituting the values

 $= \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} + \frac{1}{2}$ $= \frac{1}{2} + \frac{1}{2}$ = 1

We know that tan $3x = \tan 45^{\circ}$ By comparing $3x = 45^{\circ}$ $x = 45/3 = 15^{\circ}$

Therefore, the value of x is 15° .

16. If $4 \cos^2 x^0 - 1 = 0$ and $0 \le x \le 90$, find (i) x (ii) $\sin^2 x^0 + \cos^2 x^0$ (iii) $\cos^2 x^0 - \sin^2 x^0$. Solution: It is given that $4\cos^2 x^0 - 1 = 0$ $4\cos^2 x^0 = 1$ It can be written as $\cos^2 x^0 = \frac{1}{4}$ $\cos x^0 = \pm \sqrt{1/4}$ $\cos x^0 = +\sqrt{1/4} [0 \le x \le 90^0, \text{ then } \cos x^0 \text{ is positive}]$ $\cos x^0 = \frac{1}{2}$ We know that $\cos 60^0 = \frac{1}{2}$ $\cos x^0 = \cos 60^0$ By comparing x = 60(ii) $\sin^2 x^0 + \cos^2 x^0 = \sin^2 60^0 + \cos^2 60^0$ Substituting the values $=(\sqrt{3/2})^2+(1/2)^2$ By further calculation $= \frac{3}{4} + \frac{1}{4}$ =(3+1)/4= 4/4= 1 Therefore, $\sin^2 x^0 + \cos^2 x^0 = 1$. (iii) $\cos^2 x^0 - \sin^2 x^0 = \cos^2 60^0 - \sin^2 60^0$ Substituting the values $=(1/2)^2-(\sqrt[3]{3/2})^2$ By further calculation

 $= \frac{1}{4} - \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}$ = $\frac{1}{4} - \frac{3}{4}$ = $\frac{(1-3)}{4}$ = $-\frac{2}{4}$ = $-\frac{1}{2}$

Therefore, $\cos^2 x^0 - \sin^2 x^0 = -\frac{1}{2}$.

17. (i) If sec $\theta = \operatorname{cosec} \theta$ and $0^0 \le \theta \le 90^0$, find the value of θ . (ii) If $\tan \theta = \cot \theta$ and $0^0 \le \theta \le 90^0$, find the value of θ Solution:

(i) It is given that $\sec \theta = \csc \theta$ We know that sec $\theta = 1/\cos \theta$ $\csc \theta = 1 / \sin \theta$ So we get $1/\cos\theta = 1/\sin\theta$ $\sin \theta / \cos \theta = 1$ $\tan \theta = 1$ Here $\tan 45^0 = 1$ $\tan \theta = \tan 45^{\circ}$ $\theta = 45^{\circ}$ (ii) It is given that $\tan \theta = \cot \theta$ We know that $\cot \theta = 1/\tan \theta$ $\tan \theta = 1/\tan \theta$ So we get $\tan^2 \theta = 1$ $\tan \theta = \pm \sqrt{1}$ $\tan \theta = +1$ [$0 \le \theta \le 90^{\circ}$, $\tan \theta$ is positive] $\tan \theta = \tan 45^{\circ}$ By comparing $\theta = 45^{\circ}$ 18. If sin 3x = 1 and $0^0 \le 3x \le 90^0$, find the values of (i) sin x (ii) $\cos 2x$ (iii) $\tan^2 x - \sec^2 x$. Solution: It is given that $\sin 3x = 1$ We know that $\sin 90^0 = 1$ $\sin 3x = \sin 90^{\circ}$

By comparing 3x = 90 x = 90/3 $x = 30^{0}$ (i) $\sin x = \sin 30^{0} = 1/2$ (ii) $\cos 2x = \cos 2 \times 30 = \cos 60^{0} = 1/2$ (iii) $\tan^{2} x - \sec^{2} x = \tan^{2} 30^{0} - \sec^{2} 30^{0}$ Substituting the values $= (1/\sqrt{3})^{2} - (2/\sqrt{3})^{2}$ By further calculation = 1/3 - 4/3 = (1 - 4)/3 = -3/3= -1

Therefore, $\tan^2 x - \sec^2 x = -1$.

19. If $3 \tan^2 \theta - 1 = 0$, find $\cos 2\theta$, given that θ is acute. Solution:

It is given that $3 \tan^2 \theta - 1 = 0$ We can write it as $3 \tan^2 \theta = 1$ $\tan^2 \theta = 1/3$ $\tan \theta = 1/\sqrt{3}$ [θ is acute so $\tan \theta$ is positive] $\theta = 30^0$

So we get $\cos 2\theta = \cos 2 \times 30^0 = \cos 60^0 = \frac{1}{2}$

20. If sin $x + \cos y = 1$, $x = 30^{0}$ and y is acute angle, find the value of y. Solution:

It is given that sin x + cos y = 1 x = 30⁰ Substituting the values sin 30⁰ + cos y = 1 1/2 + cos y = 1 It can be written as cos y = 1 - $\frac{1}{2}$ Taking LCM cos y = (2 - 1)/2 = $\frac{1}{2}$

We know that $\cos 60^{\circ} = \frac{1}{2}$ $\cos y = \cos 60^{\circ}$ So we get $y = 60^{\circ}$

21. If sin (A + B) = $\sqrt{3/2}$ = cos (A – B), $0^0 < A + B \le 90^0$ (A > B), find the values of A and B. Solution:

It is given that sin (A + B) = $\sqrt{3}/2 = \cos (A - B)$ Consider sin (A + B) = $\sqrt{3}/2$ We know that sin $60^0 = \sqrt{3}/2$ sin (A + B) = sin 60^0 A + B = 60^0 (1) Similarly cos (A - B) = $\sqrt{3}/2$ We know that cos $30^0 = \sqrt{3}/2$ cos (A - B) = cos 30^0 A - B = 30^0 (2)

By adding both the equations $A + B + A - B = 60^{0} + 30^{0}$ So we get $2A = 90^{0}$ $A = 90^{0}/2 = 45^{0}$

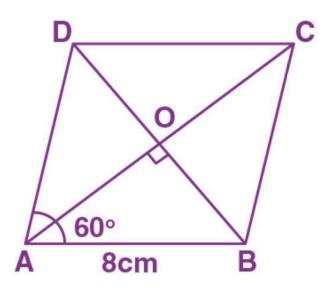
Now substitute the value of A in equation (1) $45^{0} + B = 60^{0}$ By further calculation $B = 60^{0} - 45^{0} = 15^{0}$

Therefore, $A = 45^{\circ}$ and $B = 15^{\circ}$.

22. If the length of each side of a rhombus is 8 cm and its one angle is 60⁰, then find the lengths of the diagonals of the rhombus. Solution:

It is given that Each side of a rhombus = 8 cmOne angle $= 60^{0}$

BBYJU'S



We know that the diagonals bisect the opposite angles $\angle OAB = 60^{0}/2 = 30^{0}$

In right $\angle AOB$ sin 30⁰ = OB/AB So we get $\frac{1}{2} = OB/8$ By further calculation OB = 8/2 = 4 cm BD = 2OB = 2 × 4 = 8 cm

 $\cos 30^{0} = AO/AB$ Substituting the values $\sqrt{3/2} = AO/8$ By further calculation $AO = 8\sqrt{3/2} = 4\sqrt{3}$

Here AC = $4\sqrt{3} \times 2 = 8\sqrt{3}$ cm Therefore, the length of the diagonals of the rhombus are 8 cm and $8\sqrt{3}$ cm.

23. In the right-angled triangle ABC, $\angle C = 90^{\circ}$ and $\angle B = 60^{\circ}$. If AC = 6 cm, find the lengths of the sides BC and AB. Solution:

In the right-angled triangle ABC, $\angle C = 90^{\circ}$ and $\angle B = 60^{\circ}$ AC = 6 cm

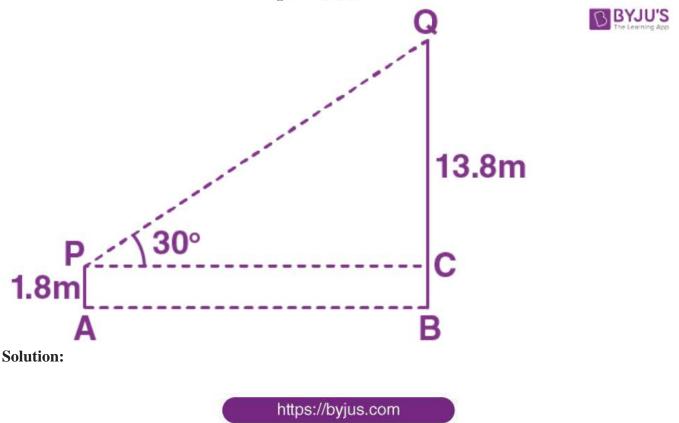
We know that

tan B = AC/BC Substituting the values tan $60^{\circ} = 6/BC$ So we get $\sqrt{3} = 6/BC$ BC = $6/\sqrt{3}$ It can be written as $= 6\sqrt{3}/(\sqrt{3} + \sqrt{3})$ $= 6\sqrt{3}/3$ $= 2\sqrt{3}$ cm

sin $60^{\circ} = AC/AB$ Substituting the values $\sqrt{3}/2 = 6/AB$ By further calculation $AB = (6 \times 2)/\sqrt{3}$ So we get $AB = (12 \times \sqrt{3})/(\sqrt{3} \times \sqrt{3})$ $= 12\sqrt{3}/3$ $= 4\sqrt{3}$ cm

Therefore, the lengths of the sides $BC = 2\sqrt{3}$ cm and $AB = 4\sqrt{3}$ cm.

24. In the adjoining figure, AP is a man of height 1.8 m and BQ is a building 13.8 m high. If the man sees the top of the building by focusing his binoculars at an angle of 30° to the horizontal, find the distance of the man from the building.



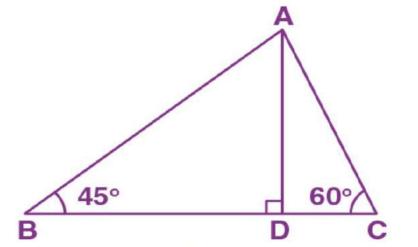
BYJU'S

It is given that Height of man AP = 1.8 mHeight of building BQ = 13.8 mAngle of elevation from the top of the building to the man = 30° Consider AB as the distance of the man from the building

AB = x then PC = x QC = 13.8 - 1.8 = 12 m In right \triangle PQC tan θ = QC/PC Substituting the values tan $30^{0} = 12/x$ By further calculation $1/\sqrt{3} = 12/x$ $x = 12\sqrt{3}$ m

Therefore, the distance of the man from the building is $12 \sqrt{3}$ m.

25. In the adjoining figure, ABC is a triangle in which $\angle B = 45^{\circ}$ and $\angle C = 60^{\circ}$. If AD \square BC and BC = 8 m, find the length of the altitude AD.



Solution:

In triangle ABC $\angle B = 45^{\circ}$ and $\angle C = 60^{\circ}$ AD \square BC and BC = 8 m

In right \triangle ABD tan 45⁰ = AD/BD So we get 1 = AD/BD AD = BD

In right \triangle ACD tan 60⁰ = AD/DC So we get $\sqrt{3} = AD/DC$ DC = AD/ $\sqrt{3}$

 $BD + DC = AD + AD/\sqrt{3}$ Taking LCM $BC = (\sqrt{3}AD + AD)/\sqrt{3}$ $8 = [AD (\sqrt{3} + 1)]/\sqrt{3}$ By further calculation $AD = 8\sqrt{3}/(\sqrt{3} + 1)$ It can be written as $= \frac{8\sqrt{3}(\sqrt{3} - 1)}{(\sqrt{3} + 1)(\sqrt{3} - 1)}$

So we get

$$= \frac{8(3 - \sqrt{3})}{3 - 1}$$
$$= \frac{8(3 - \sqrt{3})}{2}$$
$$= 4 (3 - \sqrt{3}) m$$

Therefore, the length of the altitude AD is 4 (3 - $\sqrt{3}$) m.

EXERCISE 18.2

Without using trigonometric tables, evaluate the following (1 to 5): 1. (i) cos 18⁰/sin 72⁰ (ii) tan 41⁰/cot 49⁰ (iii) cosec 17⁰30'/sec 72⁰ 30' Solution:

```
(i) \cos 18^{0}/\sin 72^{0}
It can be written as
= \cos 18^{0}/\sin (90^{0} - 18^{0})
So we get
= \cos 18^{0}/\cos 18^{0}
= 1
```

```
(ii) \tan 41^{0}/\cot 49^{0}
It can be written as
= \tan 41^{0}/\cot (90^{0} - 41^{0})
So we get
= \tan 41^{0}/\tan 41^{0}
= 1
```

```
(iii) cosec 17^{0}30'/\text{sec }72^{0}30'
It can be written as
= cosec 17^{0}30'/\text{sec }(90^{0} - 17^{0}30')
So we get
= cosec 17^{0}30'/\text{cosec }17^{0}30'
= 1
```

```
2. (i) \cot 40^{0}/\tan 50^{0} - \frac{1}{2} (\cos 35^{0}/\sin 55^{0})

(ii) (\sin 49^{0}/\cos 41^{0})^{2} + (\cos 41^{0}/\sin 49^{0})^{2}

(iii) \sin 72^{0}/\cos 18^{0} - \sec 32^{0}/\csc 58^{0}

(iv) \cos 75^{0}/\sin 15^{0} + \sin 12^{0}/\cos 78^{0} - \cos 18^{0}/\sin 72^{0}

(v) \sin 25^{0}/\sec 65^{0} + \cos 25^{0}/\csc 65^{0}.

Solution:
```

```
(i) \cot 40^{0}/\tan 50^{0} - \frac{1}{2} (\cos 35^{0}/\sin 55^{0})
It can be written as
```


$$=\frac{\cot 40^{0}}{\tan(90^{0}-40^{0})}-\frac{1}{2}\frac{\cos 35^{0}}{\sin(90^{0}-35^{0})}$$

By further calculation

$$= \frac{\cot 40^{0}}{\cot 40^{0}} - \frac{1}{2} \frac{\cos 35^{0}}{\cos 35^{0}}$$
$$= 1 - \frac{1}{2}$$
$$= \frac{1}{2}$$

(ii) $(\sin 49^{\circ}/\cos 41^{\circ})^{2} + (\cos 41^{\circ}/\sin 49^{\circ})^{2}$ It can be written as $\sin 49^{\circ}$

$$= \left[\frac{\cos(90^{\circ} - 49^{\circ})}{\cos(90^{\circ} - 49^{\circ})}\right]^{2} + \left[\frac{\cos(90^{\circ} - 41^{\circ})}{\sin(90^{\circ} - 41^{\circ})}\right]^{2}$$

 $By\ further\ calculation$

 $= (\frac{\sin 49^{0}}{\sin 49^{0}})^{2} + (\frac{\cos 41^{0}}{\cos 41^{0}})^{2}$ So we get = 1² + 1² = 1 + 1 = 2

(iii) $\sin 72^{\circ}/\cos 18^{\circ} - \sec 32^{\circ}/\csc 58^{\circ}$ It can be written as $= \frac{\sin 72^{\circ}}{\cos(90^{\circ} - 72^{\circ})} - \frac{\sec 32^{\circ}}{\csc(90^{\circ} - 32^{\circ})}$

By further calculation

$$= \frac{\sin 72^{0}}{\sin 72^{0}} - \frac{\sec 32^{0}}{\sec 32^{0}}$$

= 1 - 1
= 0

(iv) $\cos75^0/sin\ 15^0+sin\ 12^0/\ cos\ 78^0-cos\ 18^0/sin\ 72^0$ It can be written as

 $cos75^0$ $sin12^0$ $cos18^0$ $=\frac{\cos 75^{\circ}}{\sin (90^{\circ}-75^{\circ})}+\frac{\sin 12^{\circ}}{\cos (90^{\circ}-12^{\circ})}-\frac{\cos 18^{\circ}}{\sin (90^{\circ}-18^{\circ})}$ By further calculation $=\frac{cos75^0}{}$ $\frac{\cos 75^0}{\cos 75^0} + \frac{\sin 12^0}{\sin 12^0} - \frac{\cos 18^0}{\cos 18^0}$ So we get = 1 + 1 - 1= 1 (v) $\sin 25^{\circ}/\sec 65^{\circ} + \cos 25^{\circ}/\csc 65^{\circ}$ It can be written as $= (\sin 25^0 \times \cos 65^0) + (\cos 25^0 \times \sin 65^0)$ By further calculation $= [\sin 25^{\circ} \times \cos (90^{\circ} - 25^{\circ})] + [\cos 25^{\circ} \times \sin (90^{\circ} - 25^{\circ})]$ So we get $= (\sin 25^0 \times \sin 25^0) + (\cos 25^0 \times \cos 25^0)$ $=\sin^2 25^0 + \cos^2 25^0$ = 1 3. (i) $\sin 62^{\circ} - \cos 28^{\circ}$ (ii) cosec $35^0 - \sec 55^0$. Solution: (i) $\sin 62^{\circ} - \cos 28^{\circ}$ It can be written as $= \sin (90^{\circ} - 28^{\circ}) - \cos 28^{\circ}$ So we get $=\cos 28^{\circ} - \cos 28^{\circ}$ = 0(ii) cosec $35^0 - \sec 55^0$ It can be written as $= \csc 35^0 - \sec (90^0 - 35^0)$ So we get = cosec 35° - cosec 35° = 04. (i) $\cos^2 26^0 + \cos 64^0 \sin 26^0 + \tan 36^0 / \cot 54^0$ (ii) sec $17^{0}/\cos c 73^{0} + \tan 68^{0}/\cot 22^{0} + \cos^{2} 44^{0} + \cos^{2} 46^{0}$. Solution: (i) $\cos^2 26^0 + \cos 64^0 \sin 26^0 + \tan 36^0 / \cot 54^0$ It can be written as


```
=\cos^2 26^0 + \cos (90^0 - 26^0) \sin 26^0 + \tan 36^0/\cot (90^0 - 36^0)
We know that
\cos(90^{\circ}-\theta) = \sin\theta
\cot (90^0 - \theta) = \tan \theta
\sin^2 \theta + \cos^2 \theta = 1
So we get
=\cos^2 26^0 + \sin^2 26^0 + \tan 36^0/\tan 36^0
= 1 + 1
= 2
(ii) sec 17^{\circ}/\cos c 73^{\circ} + \tan 68^{\circ}/\cot 22^{\circ} + \cos^2 44^{\circ} + \cos^2 46^{\circ}
It can be written as
= \sec (90^{\circ} - 73^{\circ}) / \csc 73^{\circ} + \tan (90^{\circ} - 22^{\circ}) / \cot 22^{\circ} + \cos^{2} (90^{\circ} - 46^{\circ}) + \cos^{2} 46^{\circ}
By further calculation
= \csc 73^{0} / \csc 73^{0} + \cot 22^{0} / \cot 22^{0} + \sin^{2} 46^{0} + \cos^{2} 46^{0}
We know that \sin^2 \theta + \cos^2 \theta = 1
So we get
= 1 + 1 + 1
= 3
5. (i) \cos 65^{\circ}/\sin 25^{\circ} + \cos 32^{\circ}/\sin 58^{\circ} - \sin 28^{\circ} \sec 62^{\circ} + \csc^{2} 30^{\circ}
(ii) sec 29^{0}/\cos c 61^{0} + 2 \cot 8^{0} \cot 17^{0} \cot 45^{0} \cot 73^{0} \cot 82^{0} - 3 (\sin^{2} 38^{0} + \sin^{2} 52^{0}).
Solution:
(i) \cos 65^{\circ}/\sin 25^{\circ} + \cos 32^{\circ}/\sin 58^{\circ} - \sin 28^{\circ} \sec 62^{\circ} + \csc^2 30^{\circ}
It can be written as
= \cos 65^{\circ} / \sin (90^{\circ} - 65^{\circ}) + \cos 32^{\circ} / \sin (90^{\circ} - 32^{\circ}) - \sin 28^{\circ} \sec (90^{\circ} - 28^{\circ}) + \csc^{2} 30^{\circ}
By further calculation
= \cos 65^{\circ}/\cos 65^{\circ} + \cos 32^{\circ}/\cos 32^{\circ} - \sin 28^{\circ} \csc 28^{\circ} + \csc^{2} 30^{\circ}
We know that cosec 30^0 = 2
= 1 + 1 - 1 + 4
= 5
(ii) sec 29^{\circ}/\cos c 61^{\circ} + 2 \cot 8^{\circ} \cot 17^{\circ} \cot 45^{\circ} \cot 73^{\circ} \cot 82^{\circ} - 3 (\sin^2 38^{\circ} + \sin^2 52^{\circ})
It can be written as
= \sec 29^{\circ}/\csc(90^{\circ}-29^{\circ}) + 2 \cot 8^{\circ} \cot 17^{\circ} \cot 45^{\circ} \cot (90^{\circ}-17^{\circ}) \cot (90^{\circ}-8^{\circ}) - 3 [\sin^{2} 38^{\circ} + \sin^{2} 38^{\circ} + \sin^{2} 38^{\circ}) + \sin^{2} 38^{\circ} + \sin^{2} 38^{
(90^{\circ} - 38^{\circ})]
By further calculation
= sec 29<sup>0</sup>/ sec 29<sup>0</sup> + 2 cot 8<sup>0</sup> cot 17<sup>0</sup> × 1 × tan 17<sup>0</sup> tan 8<sup>0</sup> - 3 (sin<sup>2</sup> 38<sup>0</sup> + cos<sup>2</sup> 38<sup>0</sup>)
So we get
= 1 + 2 \cot 8^{\circ} \tan 8^{\circ} \cot 17^{\circ} \tan 17^{\circ} \times 1 - 3 \times 1
We know that
\operatorname{cosec}(90^{\circ}-\theta) = \sec \theta
\cot (90^0 - \theta) = \tan \theta
\sin^2 \theta + \cos^2 \theta = 1
Here
```


 $= 1 + 2 \times 1 \times 1 \times 1 - 3$ = 1 + 2 - 3 = 0

6. Express each of the following in terms of trigonometric ratios of angles between 0⁰ to 45⁰:
(i) tan 81⁰ + cos 72⁰
(ii) cot 49⁰ + cosec 87⁰.
Solution:

(i) $\tan 81^{0} + \cos 72^{0}$ It can be written as = $\tan (90^{0} - 9^{0}) + \cos (90^{0} - 18^{0})$ So we get = $\cot 9^{0} + \sin 18^{0}$

(ii) $\cot 49^{0} + \csc 87^{0}$ It can be written as = $\cot (90^{0} - 41^{0}) + \csc (90^{0} - 3^{0})$ So we get = $\tan 41^{0} + \sec 3^{0}$

Without using trigonometric tables, prove that (7 to 11):

7. (i) $\sin^2 28^0 - \cos^2 62^0 = 0$ (ii) $\cos^2 25^0 + \cos^2 65^0 = 1$ (iii) $\csc^2 67^0 - \tan^2 23^0 = 1$ (iv) $\sec^2 22^0 - \cot^2 68^0 = 1$. Solution:

```
(i) \sin^2 28^0 - \cos^2 62^0 = 0

Consider

LHS = \sin^2 28^0 - \cos^2 62^0

It can be written as

= \sin^2 28^0 - \cos^2 (90^0 - 28^0)

So we get

= \sin^2 28^0 - \sin^2 28^0

= 0

= RHS
```

```
(ii) \cos^2 25^0 + \cos^2 65^0 = 1
Consider
LHS = \cos^2 25^0 + \cos^2 65^0
It can be written as
= \cos^2 25^0 + \cos^2 (90^0 - 25^0)
We know that \sin^2 \theta + \cos^2 \theta = 1
So we get
= \cos^2 25^0 + \sin^2 25^0
```


= 1

(iii) $\csc^2 67^0 - \tan^2 23^0 = 1$ Consider LHS = $\csc^2 67^0 - \tan^2 23^0$ It can be written as = $\csc^2 67^0 - \tan^2 (90^0 - 67^0)$ We know that $\csc^2 \theta - \cot^2 \theta = 1$ So we get = $\csc^2 67^0 - \cot^2 67^0$ = 1

(iv) $\sec^2 22^0 - \cot^2 68^0 = 1$ Consider LHS = $\sec^2 22^0 - \cot^2 68^0$ It can be written as = $\sec^2 22^0 - \cot^2 (90^0 - 22^0)$ We know that $\sec^2 \theta - \tan^2 \theta = 1$ So we get = $\sec^2 22^0 - \tan^2 22^0$ = 1

8. (i) $\sin 63^{\circ} \cos 27^{\circ} + \cos 63^{\circ} \sin 27^{\circ} = 1$ (ii) $\sec 31^{\circ} \sin 59^{\circ} + \cos 31^{\circ} \csc 59^{\circ} = 2$. Solution:

(i) $\sin 63^{\circ} \cos 27^{\circ} + \cos 63^{\circ} \sin 27^{\circ} = 1$ Consider LHS = $\sin 63^{\circ} \cos 27^{\circ} + \cos 63^{\circ} \sin 27^{\circ}$ It can be written as = $\sin 63^{\circ} \cos (90^{\circ} - 63^{\circ}) + \cos 63^{\circ} \sin (90^{\circ} - 63^{\circ})$ = $\sin 63^{\circ} \sin 63^{\circ} + \cos 63^{\circ} \cos 63^{\circ}$ We know that $\sin^{2} \theta + \cos^{2} \theta = 1$ So we get = $\sin^{2} 63^{\circ} + \cos^{2} 63^{\circ}$ = 1

(ii) sec $31^{0} \sin 59^{0} + \cos 31^{0} \operatorname{cosec} 59^{0} = 2$ Consider LHS = sec $31^{0} \sin 59^{0} + \cos 31^{0} \operatorname{cosec} 59^{0}$ It can be written as = $1/\cos 31^{0} \times \sin 59^{0} + \cos 31^{0} \times 1/\sin 59^{0}$ By further calculation = $\sin 59^{0}/\cos (90^{0} - 59^{0}) + \cos 31^{0}/\sin (90^{0} - 31^{0})$ So we get = $\sin 59^{0}/\sin 59^{0} + \cos 31^{0}/\cos 31^{0}$

= 1 + 1= 2= RHS9. (i) sec $70^{\circ} \sin 20^{\circ} - \cos 20^{\circ} \csc 70^{\circ} = 0$ (ii) $\sin^2 20^0 + \sin^2 70^0 - \tan^2 45^0 = 0$. Solution: (i) sec $70^{\circ} \sin 20^{\circ} - \cos 20^{\circ} \csc 70^{\circ} = 0$ Consider LHS = sec $70^{\circ} \sin 20^{\circ} - \cos 20^{\circ} \csc 70^{\circ}$ By further simplification $=\sin 20^{\circ}/\cos 70^{\circ}-\cos 20^{\circ}/\sin 70^{\circ}$ It can be written as $= \sin 20^{\circ}/\cos (90^{\circ}-20^{\circ}) - \cos 20^{\circ}/\sin (90^{\circ}-20^{\circ})$ So we get $= \sin 20^{\circ} / \sin 20^{\circ} - \cos 20^{\circ} / \cos 20^{\circ}$ = 1 - 1= 0= RHS(ii) $\sin^2 20^0 + \sin^2 70^0 - \tan^2 45^0 = 0$ Consider $LHS = \sin^2 20^0 + \sin^2 70^0 - \tan^2 45^0$ It can be written as $=\sin^2 20^0 + \sin^2 (90^0 - 20^0) - \tan^2 45^0$ By further calculation $=\sin^2 20^0 + \cos^2 20^0 - \tan^2 45^0$ We know that $\sin^2 \theta + \cos^2 \theta = 1$ and $\tan 45^0 = 1$ So we get = 1 - 1= 0= RHS10. (i) $\cot 54^{0}/\tan 36^{0} + \tan 20^{0}/\cot 70^{0} - 2 = 0$ (ii) $\sin 50^{\circ}/\cos 40^{\circ} + \csc 40^{\circ}/\sec 50^{\circ} - 4 \cos 50^{\circ} \csc 40^{\circ} + 2 = 0$. Solution: (i) $\cot 54^{0}/\tan 36^{0} + \tan 20^{0}/\cot 70^{0} - 2 = 0$ Consider LHS = $\cot 54^{0}/\tan 36^{0} + \tan 20^{0}/\cot 70^{0} - 2$ It can be written as $= \cot 54^{0}/\tan (90^{0} - 54^{0}) + \tan 20^{0}/\cot (90^{0} - 20^{0}) - 2$ By further calculation $= \cot 54^{\circ}/\cot 54^{\circ} + \tan 20^{\circ}/\tan 20^{\circ} - 2$ So we get


```
= 1 + 1 - 2
= 0
= RHS
(ii) \sin 50^{\circ}/\cos 40^{\circ} + \csc 40^{\circ}/\sec 50^{\circ} - 4\cos 50^{\circ}\csc 40^{\circ} + 2 = 0
Consider
LHS = \sin 50^{\circ}/\cos 40^{\circ} + \csc 40^{\circ}/\sec 50^{\circ} - 4\cos 50^{\circ}\csc 40^{\circ} + 2
It can be written as
= \sin 50^{\circ}/\cos (90^{\circ} - 50^{\circ}) + \csc 40^{\circ}/\sec (90^{\circ} - 40^{\circ}) - 4 \cos 50^{\circ} \csc (90^{\circ} - 50^{\circ}) + 2
By further calculation
= \sin 50^{\circ}/\sin 50^{\circ} + \csc 40^{\circ}/\csc 40^{\circ} - \cos 50^{\circ} \sec 50^{\circ} + 2
So we get
= 1 + 1 - 4 \cos 50^{\circ} / \cos 50^{\circ} + 2
= 1 + 1 - 4 + 2
= 4 - 4
= 0
= RHS
11. (i) \cos 70^{\circ}/\sin 20^{\circ} + \cos 59^{\circ}/\sin 31^{\circ} - 8 \sin^2 30^{\circ} = 0
(ii) \cos 80^{\circ}/\sin 10^{\circ} + \cos 59^{\circ} \csc 31^{\circ} = 2.
Solution:
(i) \cos 70^{\circ}/\sin 20^{\circ} + \cos 59^{\circ}/\sin 31^{\circ} - 8 \sin^2 30^{\circ} = 0
Consider
LHS = \cos 70^{\circ}/\sin 20^{\circ} + \cos 59^{\circ}/\sin 31^{\circ} - 8 \sin^2 30^{\circ}
It can be written as
= \cos 70^{0} / \sin (90^{0} - 70^{0}) + \cos 59^{0} / \sin (90^{0} - 59^{0}) - 8 \sin^{2} 30^{0}
We know that \sin 30^0 = \frac{1}{2}
= \cos 70^{\circ}/\cos 70^{\circ} + \cos 59^{\circ}/\cos 59^{\circ} - 8(1/2)^{2}
By further calculation
= 1 + 1 - 8 \times \frac{1}{4}
So we get
= 2 - 2
= 0
= RHS
(ii) \cos 80^{\circ}/\sin 10^{\circ} + \cos 59^{\circ} \csc 31^{\circ} = 2
Consider
LHS = \cos 80^{\circ}/\sin 10^{\circ} + \cos 59^{\circ} \csc 31^{\circ}
It can be written as
= \cos 80^{\circ}/\sin (90^{\circ} - 80^{\circ}) + \cos 59^{\circ}/\sin 31^{\circ}
By further simplification
= \cos 80^{\circ} / \cos 80^{\circ} + \cos 59^{\circ} / \sin (90^{\circ} - 59^{\circ})
So we get
= 1 + \cos 59^{\circ} / \cos 59^{\circ}
= 1 + 1
```


= 2= RHS

12. Without using trigonometrical tables, evaluate: (i) $2(\frac{tan35^0}{cot55^0})^2 + (\frac{cot55^0}{tan35^0}) - 3(\frac{sec40^0}{cosec50^0})$ $\begin{array}{l}(ii)\frac{sin35^{0}cos55^{0}+cos35^{0}sin55^{0}}{cosec^{2}10^{0}-tan^{2}80^{0}}\\ \textbf{(iii)}\sin^{2}\mathbf{34^{0}}+\sin^{2}\mathbf{56^{0}}+2\tan\mathbf{18^{0}}\tan\mathbf{72^{0}}-\cot^{2}\mathbf{30^{0}}.\end{array}$ Solution:

$$(i)2(\frac{tan35^{0}}{cot55^{0}})^{2} + (\frac{cot55^{0}}{tan35^{0}}) - 3(\frac{sec40^{0}}{cosec50^{0}})$$

It can be written as

$$=2[\frac{tan(90^{0}-55^{0})}{cot55^{0}}] + [\frac{cot(90^{0}-35^{0})}{tan35^{0}}] - 3[\frac{sec(90^{0}-50^{0})}{cosec50^{0}}]$$

By further calculation

$$=2(\frac{cot55^{0}}{cot55^{0}})^{2}+(\frac{tan35^{0}}{tan35^{0}})-3(\frac{cosec50^{0}}{cosec50^{0}}$$

So we get

= 2 + 1 - 3= 0

$$(ii)\frac{\sin 35^0 \cos 55^0 + \cos 35^0 \sin 55^0}{\cos ec^2 10^0 - \tan^2 80^0}$$

It can be written as

$$=\frac{\sin 35^0 \cos(90^0-35^0)+\cos 35^0 \sin(90^0-35^0)}{\cos ec^2 10^0-\tan^2(90^0-10^0)}$$

By further calculation

$$=\frac{sin35^{0}.sin35^{0}+cos35^{0}.cos35^{0}}{cosec^{2}10^{0}-cot^{2}10^{0}}$$

So we get

$$=\frac{\sin^2 35^0 + \cos^2 35^0}{\csc^2 10^0 - \cot^2 10^0}$$

We know that $\sin^2 \theta + \cos^2 \theta = 1$ and $\csc^2 \theta - \cot^2 \theta = 1$ = 1/1 = 1 (iii) $\sin^2 34^0 + \sin^2 56^0 + 2 \tan 18^0 \tan 72^0 - \cot^2 30^0$ It can be written as = $\sin^2 34^0 + [\sin (90^0 - 34^0)]^2 + 2 \tan 18^0 \tan (90^0 - 18^0) - \cot^2 30^0$ By further simplification = $\sin^2 34^0 + \cos^2 34^0 + 2 \tan 18^0 \cot 18^0 - (\sqrt{3})^2$ So we get = $1 + 2 \tan 18^0 \times 1/\tan 18^0 - 3$ = 1 + 2 - 3= 0

13. Prove the following:

$$(i)\frac{\cos\Theta}{\sin(90^0-\Theta)} + \frac{\sin\Theta}{\cos(90^0-\Theta)} = 2$$
$$(ii)\cos\Theta\sin(90^0-\Theta) + \sin\Theta\cos(90^0-\Theta) = 2$$

$$(iii)\frac{tan\Theta}{tan(90^0-\Theta)} + \frac{sin(90^0-\Theta)}{cos\Theta} = sec^2\Theta.$$

Solution:

$$(i)\frac{\cos\Theta}{\sin(90^0-\Theta)} + \frac{\sin\Theta}{\cos(90^0-\Theta)} = 2$$

We know that

LHS = $\frac{\cos\Theta}{\sin(90^{0} - \Theta)} + \frac{\sin\Theta}{\cos(90^{0} - \Theta)}$ So we get = $\cos\theta/\cos\theta + \sin\theta/\sin\theta$ = 1 + 1= 2= RHS

(ii) $\cos \theta \sin (90^{0} - \theta) + \sin \theta \cos (90^{0} - \theta) = 1$ Consider LHS = $\cos \theta \sin (90^{0} - \theta) + \sin \theta \cos (90^{0} - \theta)$ It can be written as = $\cos \theta$. $\cos \theta + \sin \theta$. $\sin \theta$ So we get = $\cos^{2} \theta + \sin^{2} \theta$ = 1 = RHS

$$(iii) \frac{tan\Theta}{tan(90^{0} - \Theta)} + \frac{sin(90^{0} - \Theta)}{cos\Theta} = sec^{2}\Theta$$

Consider
$$\frac{tan\Theta}{tan(90^{0} - \Theta)} + \frac{sin(90^{0} - \Theta)}{cos\Theta}$$

By further calculation
$$= tan \theta / \cot \theta + \cos \theta / \cos \theta$$

So we get
$$= tan \theta \times tan \theta + 1$$

$$= tan^{2} \theta + 1$$

$$= sec^{2} \theta$$

$$= RHS$$

14. Prove the following:
(i)
$$\frac{\cos(90^{0} - A)\sin(90^{0} - A)}{\tan(90^{0} - A)} = 1 - \cos^{2}A$$
(ii)
$$\frac{\sin(90^{0} - A)}{\csc(90^{0} - A)} + \frac{\cos(90^{0} - A)}{\sec(90^{0} - A)} = 1.$$
Solution:

Solution:

$$(i)\frac{\cos(90^0 - A)\sin(90^0 - A)}{\tan(90^0 - A)} = 1 - \cos^2 A$$

Consider

LHS =
$$\frac{\cos(90^{0} - A)\sin(90^{0} - A)}{\tan(90^{0} - A)}$$

It can be written as = sin A cos A/ cot A So we get = (sin A cos A × sin A)/ cos A = sin² A = 1 - cos² A = RHS

$$(ii)\frac{\sin(90^0 - A)}{\csc(90^0 - A)} + \frac{\cos(90^0 - A)}{\sec(90^0 - A)} = 1$$

Consider

 $LHS = \frac{sin(90^{0} - A)}{cosec(90^{0} - A)} + \frac{cos(90^{0} - A)}{sec(90^{0} - A)}$

It can be written as


```
= \cos A / \sec A + \sin A / \csc A
So we get
= \cos A \times \cos A + \sin A \times \sin A
=\cos^2 A + \sin^2 A
= 1
= RHS
```

15. Simplify the following:

$$\begin{aligned} (i)\frac{\cos\Theta}{\sin(90^{0}-\Theta)} + \frac{\cos(90^{0}-\Theta)}{\sec(90^{0}-\Theta)} - 3\tan^{2}30^{0} \\ (ii)\frac{\csc(90^{0}-\Theta)\sin(90^{0}-\Theta)\cot(90^{0}-\Theta)}{\cos(90^{0}-\Theta)\sec(90^{0}-\Theta)\tan\Theta} + \frac{\cot\Theta}{\tan(90^{0}-\Theta)}. \end{aligned}$$

Solution:

$$(i)\frac{\cos\Theta}{\sin(90^0-\Theta)} + \frac{\cos(90^0-\Theta)}{\sec(90^0-\Theta)} - 3\tan^2 30^0$$

It can be written as $= \cos \theta / \cos \theta + \sin \theta / \csc \theta - 3 \tan^2 30^0$ By further calculation $= 1 + \sin \theta \times \sin \theta - 3 (1/\sqrt{3})^2$ So we get $=\sin^2\theta + 1 - 3 \times 1/3$ $=\sin^2\theta+1-1$ $=\sin^2\theta +$

$$(ii)\frac{cosec(90^{0}-\Theta)sin(90^{0}-\Theta)cot(90^{0}-\Theta)}{cos(90^{0}-\Theta)sec(90^{0}-\Theta)tan\Theta} + \frac{cot\Theta}{tan(90^{0}-\Theta)}$$

It can be written as

= (sec $\theta \cos \theta \tan \theta$)/ (sin θ cosec $\theta \tan \theta$) + cot θ / cot θ So we get $= \sec \theta \cos \theta / \sin \theta \csc \theta + 1$ = 1/1 + 1= 1 + 1= 2

16. Show that

 $\frac{\cos^2(45^0 + \Theta) + \cos^2(45^0 - \Theta)}{\tan(60^0 + \Theta)\tan(30^0 - \Theta)} = 1.$ **Solution:**

Consider

$$LHS = \frac{\cos^2(45^0 + \Theta) + \cos^2(45^0 - \Theta)}{\tan(60^0 + \Theta)\tan(30^0 - \Theta)}$$

It can be written as

$$=\frac{\cos^2(45^0+\Theta)+\cos^2[90^0-(45^0-\Theta)]}{\tan(60^0+\Theta)\tan[90^0-(60^0-\Theta)]}$$

 $By\ further\ calculation$

$$=\frac{\cos^{2}(45^{0}+\Theta)+\sin^{2}(45^{0}-\Theta)}{\tan(60^{0}+\Theta)\cot(60^{0}-\Theta)}$$

We know that $\cos (90^{\circ} - \theta) = \sin \theta$, $\tan (90^{\circ} - \theta) = \cot \theta$ and $\tan \theta \cot \theta = 1$ So we get = 1/1= 1 = RHS

```
17. Find the value of A if
```

(i) sin 3A = cos (A – 6^0), where 3A and A – 6^0 are acute angles (ii) tan 2A = cot (A – 18^0), where 2A and A – 18^0 are acute angles (iii) If sec 2A = cosec (A – 27^0) where 2A is an acute angle, find the measure of $\angle A$. Solution:

```
(i) \sin 3A = \cos (A - 6^0), where 3A and A - 6^0 are acute angles
It is given that
\sin 3A = \cos (A - 6^0)
We know that \cos (90^0 - \theta) = \sin \theta
\cos (90^0 - 3A) = \cos (A - 6^0)
By comparing both
90^0 - 3A = A - 6^0
By further calculation
90^0 + 6^0 = A + 3A
96^0 = 4A
So we get
A = 96^0/4 = 24^0
```

Hence, the value of A is 24° .

(ii) $\tan 2A = \cot (A - 18^{0})$ We know that $\cot (90^{0} - \theta) = \tan \theta$ $\cot (90^{0} - 2A) = \cot (A - 18^{0})$ By comparing both $90^{0} - 2A = A - 18^{0}$ By further calculation

 $90^{0} + 18^{0} = A + 2A$ So we get $3A = 108^{0}$ $A = 108^{0}/3 = 36^{0}$

Hence, the value of A is 36° .

(iii) sec $2A = cosec (A - 27^0)$ We know that $cosec (90^0 - \theta) = sec \theta$ $cosec (90^0 - 2A) = cos (A - 27^0)$ By comparing both $90^0 - 2A = A - 27^0$ By further calculation $90^0 + 27^0 = A + 2A$ So we get $3A = 117^0$ $A = 117^0/3 = 39^0$

Hence, the value of A is 39° .

18. Find the value of θ ($0^0 < \theta < 90^0$) if: (i) cos 63⁰ sec ($90^0 - \theta$) = 1 (ii) tan 35⁰ cot ($90^0 - \theta$) = 1. Solution:

(i) $\cos 63^{\circ} \sec (90^{\circ} - \theta) = 1$ It can be written as $\cos 63^{\circ} = 1/\sec (90^{\circ} - \theta)$ We know that $1/\sec \theta = \cos \theta$ $\cos 63^{\circ} = \cos (90^{\circ} - \theta)$ By comparing both $90^{\circ} - \theta = 63^{\circ}$ By further calculation $\theta = 90^{\circ} - 63^{\circ} = 27^{\circ}$

(ii) $\tan 35^{\circ} \cot (90^{\circ} - \theta) = 1$ It can be written as $\tan 35^{\circ} = 1/\cot (90^{\circ} - \theta)$ We know that $1/\cot \theta = \cos \theta$ $\tan 35^{\circ} = \tan (90^{\circ} - \theta)$ By comparing both $35^{\circ} = 90^{\circ} - \theta$ By further calculation $\theta = 90^{\circ} - 35^{\circ} = 55^{\circ}$

19. If A, B and C are the interior angles of a \triangle ABC, show that

(i) cos (A + B)/2 = sin C/2
(ii) tan (C + A)/2 = cot B/2.
Solution:

A, B and C are the interior angles of a \triangle ABC It can be written as $\angle A + \angle B + \angle C = 180^{\circ}$ Dividing both sides by 2 $(\angle A + \angle B + \angle C)/2 = 180^{\circ}/2$ $A/2 + B/2 + C/2 = 90^{\circ}$

(i) $\cos (A + B)/2 = \sin C/2$ We can write it as $(A + B)/2 = 90^{0} - C/2$ We know that $\cos (90^{0} - C/2) = \sin C/2$ Here $\cos (90^{0} - \theta) = \sin \theta$ $\sin C/2 = \sin C/2$

(ii) $\tan (C + A)/2 = \cot B/2$ We know that $(A + C)/2 = 90^{0} - B/2$ $= \tan (90^{0} - B/2)$ So we get $= \cot B/2$ = RHS

CHAPTER TEST

1. Find the values of: (i) $\sin^2 60^\circ - \cos^2 45^\circ + 3\tan^2 30^\circ$ $2\cos^2 45^\circ + 3\tan^2 30^\circ$ $\sqrt{3}\cos 30^\circ + \sin 30^\circ$ (ii)

(iii) sec 30° tan 60° + sin 45° cosec 45° + cos 30° cot 60° Solution:

(i)
$$\sin^2 60^\circ - \cos^2 45^\circ + 3\tan^2 30^\circ$$

= $\left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{\sqrt{2}}\right)^2 + 3\left(\frac{1}{\sqrt{3}}\right)^2$
= $\frac{3}{4} - \frac{1}{2} + 3 \times \frac{1}{3} = \frac{3}{4} - \frac{1}{2} + \frac{1}{1}$
= $\frac{3 - 2 + 4}{4} = \frac{7 - 2}{4} = \frac{5}{4} = 1\frac{1}{4}$

Therefore, $\sin^2 60^\circ - \cos^2 45^\circ + 3\tan^2 30^\circ = 1\frac{1}{4}$

(ii)
$$\frac{2\cos^2 45^\circ + 3\tan^2 30^\circ}{\sqrt{3}\cos 45^\circ + \sin 30^\circ}$$
$$= \frac{2\left(\frac{1}{\sqrt{2}}\right)^2 + 3 \times \left(\frac{1}{\sqrt{3}}\right)^2}{\sqrt{3} \times \left(\frac{\sqrt{3}}{2}\right) + \frac{1}{2}}$$
$$= \frac{2 \times \frac{1}{2} + 3 \times \frac{1}{3}}{\frac{3}{2} + \frac{1}{2}} = \frac{1+1}{\frac{3+1}{2}} = \frac{2}{\frac{4}{2}} = \frac{2}{2} = 1$$
Hence,
$$\frac{2\cos^2 45^\circ + 3\tan^2 30^\circ}{\sqrt{3}\cos 30^\circ + \sin 30^\circ} = 1$$

ŀ

(iii) sec 30° tan 60° + sin 45° cosec 45° + cos 30° cot 60°

$$= \frac{2}{\sqrt{3}} \times \sqrt{3} + \frac{1}{\sqrt{2}} \times \sqrt{2} + \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}} = \frac{2}{1} + \frac{1}{1} + \frac{1}{2}$$
$$= 2 + 1 + \frac{1}{2} = 3 + \frac{1}{2} = (6 + 1)/2$$

 $= 7/2 = 3\frac{1}{2}$ Thus, sec 30° tan 60° + sin 45° cosec 45° + cos 30° cot 60° = 3¹/₂

2. Taking $A = 30^{\circ}$, verify that (i) $\cos^4 A - \sin^4 A = \cos 2A$

(i) $\cos A - \sin A - \cos 2A$ (ii) $4\cos A \cos (60^\circ - A) \cos (60^\circ + A) = \cos 3 A$. Solution:

(i)
$$\cos^4 A - \sin^4 A = \cos 2A$$

Let's take $A = 30^\circ$
so, we have
L.H.S.= $\cos^4 A - \sin^4 A = \cos^4 30^\circ - \sin^4 30^\circ$
 $= \left(\frac{\sqrt{3}}{2}\right)^4 - \left(\frac{1}{2}\right)^4$
 $= \frac{\sqrt{3} \times \sqrt{3} \times \sqrt{3} \times \sqrt{3}}{2 \times 2 \times 2 \times 2} - \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{9}{16} - \frac{1}{16}$
 $= \frac{9-1}{16} = \frac{8}{16} = \frac{1}{2}$

Now, R.H.S. = $\cos 2A = \cos 2(30^\circ) = \frac{1}{2}$

Therefore, L.H.S. = R.H.S. hence verified.

(ii) 4 cos A cos (60°- A) cos (60° + A) = cos 3 A Let's take A = 30° L.H.S. = 4 cos A cos (60° - A) cos (60° + A) = 4 cos 30° cos (60° - 30°) cos (60° + 30°) = 4 cos 30° cos 30° cos 90° = 4 × ($\sqrt{3}/2$) × ($\sqrt{3}/2$) × 0 = 0 Now, R.H.S. = cos 3A = cos (3 × 30°) = cos 90° = 0 Hence, L.H.S. = R.H.S. hence verified.

3. If $A = 45^{\circ}$ and $B = 30^{\circ}$, verify that sin A/ (cos A + sin A + sin B) = 2/3 Solution: Taking,

L.H.S.
$$\frac{\sin A}{\cos A + \sin A \sin B}$$
$$= \frac{\frac{\sin 45^{\circ}}{\sin 45^{\circ}}}{\frac{\sqrt{2}}{\cos 45^{\circ} + \sin 45^{\circ} \sin 30^{\circ}}}$$
$$= \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \times \frac{1}{2}} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{4}}$$
$$= \frac{\frac{\sqrt{2}}{2}}{\frac{2\sqrt{2} + \sqrt{2}}{4}} = \frac{\frac{\sqrt{2}}{2}}{\frac{3\sqrt{2}}{4}}$$
$$= \frac{\sqrt{2}}{2} \times \frac{4}{3\sqrt{2}} = \frac{2}{3} = \text{R.H.S.}$$

Hence verified.

4. Taking $A = 60^{\circ}$ and $B = 30^{\circ}$, verify that (i) sin $(A + B)/\cos A \cos B = \tan A + \tan B$ (ii) sin $(A - B)/\sin A \sin B = \cot B - \cot A$ Solution:

(i) Here, A = 60° and B = 30°
LHS =
$$\frac{\sin(A+B)}{\cos A \cos B} = \frac{\sin(60^\circ + 30^\circ)}{\cos 60^\circ \cos 30^\circ}$$

= $\frac{\sin 90^\circ}{\cos 60^\circ \cos 30^\circ} = \frac{1}{\frac{1}{2} \times \frac{\sqrt{3}}{2}}$
= $\frac{\frac{1}{\sqrt{3}}}{\frac{\sqrt{3}}{4}} = \frac{4}{\sqrt{3}}$
Now,
R.H.S. = tan A + tan B
= tan 60° + tan 30°
= $\sqrt{3} + \frac{1}{\sqrt{3}}$
= $\frac{3+1}{\sqrt{3}} = \frac{4}{\sqrt{3}}$

 $\therefore \text{ L.H.S.} = \text{ R.H.S.}$

(ii) $A = 60^{\circ}, B = 30^{\circ}$

L.H.S. = $\frac{\sin(A - B)}{\sin A \sin B} = \frac{\sin(60^{\circ} - 30^{\circ})}{\sin 60^{\circ} \sin 30^{\circ}}$ = $\frac{\sin 30^{\circ}}{\sin 60^{\circ} \sin 30^{\circ}} = \frac{1}{\sin 60^{\circ}} = \frac{1}{\frac{\sqrt{3}}{2}}$ = $\frac{2}{\sqrt{3}}$

 $R.H.S. = \cot B - \cot A$ $= \cot 30^{\circ} - \cot 60^{\circ}$

$$=\sqrt{3} - \frac{1}{\sqrt{3}} = \frac{3-1}{\sqrt{3}} = \frac{2}{\sqrt{3}}$$

: L.H.S. = R.H.S.

5. If $\sqrt{2} \tan 2\theta = \sqrt{6}$ and $\theta^{\circ} < 2\theta < 90^{\circ}$, find the value of $\sin \theta + \sqrt{3} \cos \theta - 2 \tan^2 \theta$. Solution:

Given, $\sqrt{2} \tan 2\theta = \sqrt{6}$ $\tan 2\theta = \sqrt{6}/\sqrt{2}$ $=\sqrt{3}$ $= \tan 60^{\circ}$ $\Rightarrow 2\theta = 60^{\circ}$ $\theta = 30^{\circ}$ Now. $\sin \theta + \sqrt{3} \cos \theta - 2 \tan^2 \theta$ $= \sin 30^\circ + \sqrt{3} \cos 30^\circ - 2 \tan^2 30^\circ$ $= \frac{1}{2} + \sqrt{3} \times \frac{\sqrt{3}}{2} - 2 (1/\sqrt{3})^2$ $= \frac{1}{2} + \frac{3}{2} - \frac{2}{3}$ = 4/2 - 2/3=(12 - 4)/6= 8/6= 4/3

6. If 3θ is an acute angle, solve the following equations for θ : (i) (cosec $3\theta - 2$) (cot $2\theta - 1$) = 0 (ii) (tan $\theta - 1$) (cosec $3\theta - 1$) = 0 Solution:

(i) $(\csc 3\theta - 2) (\cot 2\theta - 1) = 0$

Now, either $\csc 3\theta - 2 \text{ or } \cot 2\theta - 1 = 0$ $\Rightarrow \csc 3\theta = 2 \text{ or } \cot 2\theta = 1$ So, $\csc 3\theta = \csc 3\theta^{\circ} \text{ or } \cot 2\theta = \cot 45^{\circ}$ $\Rightarrow 3\theta = 30^{\circ} \text{ or } 2\theta = 45^{\circ}$ Thus, $\theta = 30^{\circ} \text{ or } 45^{\circ}$.

(ii) $(\tan \theta - 1) (\operatorname{cosec} 3\theta - 1) = 0$ Now, either $\tan \theta - 1 = 0$ or $\operatorname{cosec} 3\theta - 1 = 0$ $\Rightarrow \tan \theta = 1$ or $\operatorname{cosec} 3\theta = 1$ So, $\tan \theta = \tan 45^\circ \text{ or } \operatorname{cosec} 3\theta = \operatorname{cosec} 90^\circ$ $\Rightarrow \theta = 45^\circ \text{ or } 3\theta = 90^\circ \text{ i.e. } \theta = 30^\circ$ Thus, $\theta = 45^\circ \text{ or } 30^\circ$.

7. If tan $(A + B) = \sqrt{3}$ and tan (A - B) = 1 and A, B (B < A) are acute angles, find the values of A and B. Solution:

Given, $\tan(A + B) = \sqrt{3}$ [Since, $\tan 60^\circ = \sqrt{3}$] So, $\tan(A + B) = \tan 60^{\circ}$ \Rightarrow A + B = 60°(i) Also, given $\tan(A - B) = 1$ So, $\tan (A - B) = \tan 45^{\circ} [\tan 45^{\circ} = 1]$ \Rightarrow A – B = 45° (ii) From equation (1) and (2), we get $A + B = 60^{\circ}$ $A - B = 45^{\circ}$ ----- $2A = 105^{\circ}$ $A = 52\frac{1}{2^{\circ}}$ Now, on substituting the value of A in equation (i), we get $521/2^{\circ} + B = 60^{\circ}$ $B = 60^{\circ} - 521/2^{\circ} = 71/2^{\circ}$ Therefore, the value of A = $52\frac{1}{2}^{\circ}$ and B = $7\frac{1}{2}^{\circ}$

8. Without using trigonometrical tables, evaluate the following: (i) sin^2 28° + sin^2 62° – tan^2 45°

(ii) $2\frac{\cos 27^{\circ}}{\sin 63^{\circ}} + \frac{\tan 27^{\circ}}{\cot 63^{\circ}} + \cos 0^{\circ}$ (iii) $\cos 18^{\circ} \sin 72^{\circ} + \sin 18^{\circ} \cos 72^{\circ}$ (iv) $5 \sin 50^{\circ} \sec 40^{\circ} - 3 \cos 59^{\circ} \csc 31^{\circ}$

Solution:

(i) $\sin^2 28^\circ + \sin^2 62^\circ - \tan^2 45^\circ$ $=\sin^2 28^\circ + \sin^2 (90^\circ - 28^\circ) - \tan^2 45^\circ$ $=\sin^2 28^\circ + \cos^2 28^\circ - \tan^2 45^\circ$ $(: \sin^2 \theta + \cos^2 \theta = 1 \text{ and } \tan 45^\circ = 1)$ $= 1 - (1)^2$ = 1 - 1= 0(*ii*) $2\frac{\cos 27^{\circ}}{\sin 63^{\circ}} + \frac{\tan 27^{\circ}}{\cot 63^{\circ}} + \cos 0^{\circ}$ $= 2 \frac{\cos 27^{\circ}}{\sin (90^{\circ} - 27^{\circ})} + \frac{\tan 27^{\circ}}{\cot (90^{\circ} - 27^{\circ})} + \cos 0^{\circ}$ $= 2\frac{\cos 27^{\circ}}{\cos 27^{\circ}} + \frac{\tan 27^{\circ}}{\tan 27^{\circ}} + 1$ $(:: \cos 0^\circ = 1)$ $= 2 \times 1 + 1 + 1$ = 2 + 1 + 1= 4 (iii) $\cos 18^{\circ} \sin 12^{\circ} + \sin 18^{\circ} \cos 12^{\circ}$ $= \cos (90^{\circ} - 12^{\circ}) \sin 72^{\circ} + \sin (90^{\circ} - 12^{\circ}) \cos 12^{\circ}$ $= \sin 72^\circ.\sin 12^\circ + \cos 12^\circ \cos 12^\circ$ $=\sin^2 12^\circ + \cos^2 12^\circ$ $(\because \sin^2 \theta + \cos^2 \theta = 1)$ = 1 (iv) $5 \sin 50^\circ \sec 40^\circ - 3 \cos 59^\circ \csc 31^\circ$ $= 5 \frac{\sin 50^{\circ}}{\cos 40^{\circ}} - 3 \frac{\cos 59^{\circ}}{\sin 31^{\circ}}$ sin 31° $=5\frac{\sin 50^{\circ}}{\cos (90^{\circ}-50^{\circ})}-3\frac{\cos 59^{\circ}}{\sin (90^{\circ}-59^{\circ})}$ $=5\frac{\sin 50^{\circ}}{\sin 50^{\circ}} - 3\frac{\cos 59^{\circ}}{\cos 59^{\circ}} = 5 \times 1 - 3 \times 1$ = 5 - 3= 2

9. Prove that:

 $\frac{\cos (90^\circ - \theta) \sec (90^\circ - \theta) \tan \theta}{\csc (90^\circ - \theta) \sin (90^\circ - \theta) \cot (90^\circ - \theta)} + \frac{\tan (90^\circ - \theta)}{\cot \theta} = 2$ Solution:

L.H.S. =
$$\frac{\cos (90^{\circ} - \theta) \sec (90^{\circ} - \theta) \tan \theta}{\csc (90^{\circ} - \theta) \sin (90^{\circ} - \theta) \cot (90^{\circ} - \theta)} + \frac{\tan (90^{\circ} - \theta)}{\cot \theta}$$
$$= \frac{\sin \theta \csc \theta \tan \theta}{\sec \theta \cos \theta \tan \theta} + \frac{\cot \theta}{\cot \theta}$$
$$= \frac{1 \times \tan \theta}{1 \times \tan \theta} + 1 = 1 + 1 = 2 = \text{R.H.S.}$$
Thus, L.H.S. = R.H.S.
Hence proved.
10. When 0° < A < 90°, solve the following equations:
(i) sin 3A = cos 2A
(ii) tan 5A = cot A
Solution:
(i) sin 3A = cos 2A
 $\Rightarrow \sin 3A = \sin (90^{\circ} - 2A)$
So,
 $3A = 90^{\circ} - 2A$
 $3 + 2A = 90^{\circ}$
 $\therefore A = 90^{\circ}/5 = 18^{\circ}$
(ii) tan 5A = cot A
 $\Rightarrow \tan 5A = \tan (90^{\circ} - A)$
So,
 $5A = 90^{\circ} - A$
 $5A + A = 90^{\circ}$
 $(A = 90^{\circ})' = 15^{\circ}$

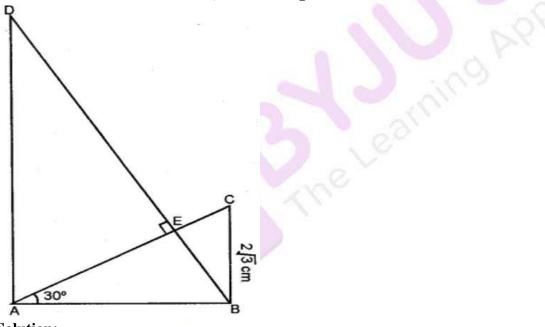
11. Find the value of θ if (i) sin (θ + 36°) = cos θ , where θ and θ + 36° are acute angles. (ii) sec 4 θ = cosec (θ – 20°), where 4 θ and θ – 20° are acute angles. Solution:

```
(i) Given, \theta and (\theta + 36^{\circ}) are acute angles
And,
\sin(\theta + 36^{\circ}) = \cos \theta = \sin(90^{\circ} - \theta) [As, \sin(90^{\circ} - \theta) = \cos \theta]
On comparing, we get
\theta + 36^{\circ} = 90^{\circ} - \theta
\theta + \theta = 90^{\circ} - 36^{\circ}
2\theta = 54^{\circ}
```


 $\theta = 54^{\circ}/2$ $\therefore \theta = 27^{\circ}$

(ii) Given, θ and $(\theta - 20^\circ)$ are acute angles And, sec $4\theta = \csc(\theta - 20^\circ)$ $\csc(90^\circ - 4\theta) = \csc(\theta - 20^\circ)$ [Since, $\csc(90^\circ - \theta) = \sec\theta$] On comparing, we get $90^\circ - 4\theta = \theta - 20^\circ$ $90^\circ + 20^\circ = \theta + 4\theta$ $5\theta = 110^\circ$ $\theta = 110^\circ/5$ $\therefore \theta = 22^\circ$

12. In the adjoining figure, ABC is right-angled triangle at B and ABD is right angled triangle at A. If BD \perp AC and BC = $2\sqrt{3}$ cm, find the length of AD.



Solution:

Given, $\triangle ABC$ and $\triangle ABD$ are right angled triangles in which $\angle A = 90^{\circ}$ and $\angle B = 90^{\circ}$ And,

BC = $2\sqrt{3}$ cm. AC and BD intersect each other at E at right angle and $\angle CAB = 30^{\circ}$. Now in right $\triangle ABC$, we have $\tan \theta = BC/AB$ $\Rightarrow \tan 30^{\circ} = <math>2\sqrt{3}/AB$ $\Rightarrow 1/\sqrt{3} = <math>2\sqrt{3}/AB$ $\Rightarrow AB = <math>2\sqrt{3} \times \sqrt{3} = 2 \times 3 = 6$ cm. In $\triangle ABE$, $\angle EAB = 30^{\circ}$ and $\angle EAB = 90^{\circ}$ Hence,

 $\angle ABE \text{ or } \angle ABD = 180^{\circ} - 90^{\circ} - 30^{\circ}$ = 60° Now in right $\triangle ABD$, we have tan 60° = AD/AB $\Rightarrow \sqrt{3} = AD/6$ Thus, AD = 6 $\sqrt{3}$ cm.

