Class X, Physics, chapter 6

Page 133 numerical

1. Wavelength (
$$\lambda$$
) = ?
Frequency f =5.4 x 10¹⁴ Hz
Speed of light (c) = 3 lac km/sec
= 300000 x 10³ m/sec
= 3 x 10⁸ m/sec
wavelength = $\frac{speed \ of \ light}{frequency}$
 $\lambda = \frac{3 \times 10^8 m/s}{5.4 \times 10^{14} Hz}$
 $\lambda = 0.555 \times 10^{-6} m$
 $\lambda = 555 \times 10^{-6} m$
 $\lambda = 555 \times 10^{-9} m$
 $\lambda = 555 m$
2. Frequency (f) =3.75 x 10¹⁴ - 7.5 x 10¹⁴ Hz
Speed of light (c) =3 x 10⁵ km/sec
= 3 x 10⁸ m/sec
Let f1 = 7.5 x 10¹⁴ Hz
Then, $\lambda 1 = \frac{c}{f_1}$
 $\lambda 1 = \frac{3 \times 10^8}{7.5 \times 10^{14}}$
 $\lambda 2 = \frac{3 \times 10^8}{3.75 \times 10^{14}}$
 $\lambda 2 = \frac{3 \times 10^8}{3.75 \times 10^{14}}$

$$\label{eq:lambda} \begin{split} \lambda 1 = 4 \ x \ 10^{-7} \ m & \lambda 2 = 8 \ x \ 10^{-7} m \\ \text{so range of wavelength } (\lambda) \ \text{is} = 4 \ x \ 10^{-7} \ \text{m to} \ 8 \ x \ 10^{-7} m \end{split}$$

Page 137 numerical

- 1. Frequency (f) = 500MHz = 500 x 10^{6} Hz Wavelength (λ) = 0.6m Velocity = frequency x wavelength V = f x λ V = 500 x 10^{6} x 0.6 V = 3 x 10^{8} m/s Medium is air
- 2. Frequency (f) = 3×10^{20} Hz Speed (c) = 3×10^8 m/s Wavelength (λ) =?

wavelenth (
$$\lambda$$
) = $\frac{speed(c)}{frequency(f)}$
 $\lambda = \frac{3 \times 10^8}{3 \times 10^{20}}$

 $\lambda = 10^{-12} \text{ m}$

Wavelength (λ)= 4000Å = 4000 x 10⁻¹⁰m
 Speed (c) = 3 x 10⁸ m/s
 Frequency (f) = ?

$$f = \frac{c}{\lambda}$$

$$f = \frac{3 X \, 10^8}{4000 \, X \, 10^{-10}}$$

$$f = 7.5 \, X \, 10^{15} Hz$$

No change in frequency when it travel throw glass, only speed and wavelength changes on change of medium. Frequency remains same.